zbMATH — the first resource for mathematics

The Drinfel’d double for group-cograded multiplier Hopf algebras. (English) Zbl 1161.16028
Summary: Let \(G\) be any group and let \(K(G)\) denote the multiplier Hopf algebra of complex functions with finite support in \(G\). The product in \(K(G)\) is pointwise. The comultiplication on \(K(G)\) is defined with values in the multiplier algebra \(M(K(G)\otimes K(G))\) by the formula \((\Delta(f))(p,q)=f(pq)\) for all \(f\in K(G)\) and \(p,q\in G\).
In this paper we consider multiplier Hopf algebras \(B\) (over \(\mathbb{C}\)) such that there is an embedding \(I\colon K(G)\to M(B)\). This embedding is a non-degenerate algebra homomorphism which respects the comultiplication and maps \(K(G)\) into the center of \(M(B)\). These multiplier Hopf algebras are called \(G\)-cograded multiplier Hopf algebras. They are a generalization of the Hopf group-coalgebras as studied by Turaev and Virelizier.
In this paper, we also consider an admissible action \(\pi\) of the group \(G\) on a \(G\)-cograded multiplier Hopf algebra \(B\). When \(B\) is paired with a multiplier Hopf algebra \(A\), we construct the Drinfel’d double \(D^\pi\) where the coproduct and the product depend on the action \(\pi\). We also treat the *-algebra case. If \(\pi\) is the trivial action, we recover the usual Drinfel’d double associated with the pair \(\langle A,B\rangle\). On the other hand, also the Drinfel’d double, as constructed by Zunino for a finite-type Hopf group-coalgebra, is an example of the construction above. In this case, the action is non-trivial but related with the adjoint action of the group on itself. Now, the double is again a \(G\)-cograded multiplier Hopf algebra.

16W30 Hopf algebras (associative rings and algebras) (MSC2000)
16S40 Smash products of general Hopf actions
Full Text: DOI arXiv
[1] Abd El-Hafez, A.T., Delvaux, L., Van Daele, A.: Group-cograded multiplier Hopf (*-)algebras. Preprint (2004). http://www.citebase.org/abstract?id=oai:arXivorg:math/0404026 · Zbl 1129.16027
[2] Delvaux, L.: Twisted tensor product of multiplier Hopf ()algebras. J. Algebra 269(1), 285–316 (2003) · Zbl 1036.16030 · doi:10.1016/S0021-8693(03)00467-8
[3] Delvaux, L., Van Daele, A.: The Drinfel’d double of multiplier Hopf algebras. J. Algebra 272(1), 273–291 (2004) · Zbl 1044.16028 · doi:10.1016/j.jalgebra.2003.03.003
[4] Drabant, B., Van Daele, A.: Pairing and quantum double of multiplier Hopf algebras. Algebr. Represent. Theory 4(2), 109–132 (2001) · Zbl 0993.16024 · doi:10.1023/A:1011470032416
[5] Drabant, B., Van Daele, A., Zhang, Y.: Actions of multiplier Hopf algebras. Commun. Algebra 27(9), 4117–4127 (1999) · Zbl 0951.16013 · doi:10.1080/00927879908826688
[6] Hegazi, A.S., Abd El-Hafez, A.T., Mansour, M.: Multiplier Hopf group-coalgebras. (Preprint) Mansoura University, Egypt (2002)
[7] Kustermans, J., Vaes, S.: Locally compact quantum groups. Ann. Sci. Ec. Norm. Super. 33, 837–934 (2000) · Zbl 1034.46508
[8] Kustermans, J., Van Daele, A.: C*-algebraic quantum groups arising from algebraic quantum groups. Int. J. Math. 8, 1067–1139 (1997) · Zbl 1009.46038 · doi:10.1142/S0129167X97000500
[9] Turaev, V.G.: Homotopy field theory in dimension 3 and crossed group-categories. (Preprint) Institut de Recherche Mathématique Avancée, Strasbourg, France (2000). Math. GT/0005291
[10] Van Daele, A.: Multiplier Hopf algebras. Trans. Am. Math. Soc. 342(2), 917–932 (1994) · Zbl 0809.16047 · doi:10.2307/2154659
[11] Van Daele, A.: An algebraic framework for group duality. Adv. Math. 140, 323–366 (1998) · Zbl 0933.16043 · doi:10.1006/aima.1998.1775
[12] Van Daele, A.: Multiplier Hopf algebras with positive integrals: A laboratory for locally compact quantum groups. In: Vainerman, L. (ed) Locally Compact Quantum Groups and Groupoids, Proceedings of the Meeting of Theoretical Physicists and Mathematicians, Strasbourg, 21-23 February 2003 · Zbl 1176.22006
[13] Van Daele, A., Zhang, Y.: A survey on multiplier Hopf algebras. In: Caenepeel, S., Van Oystaeyen, F. (eds.) Hopf Algebras and Quantum Groups, pp. 259–309. Dekker, New York (1998) · Zbl 1020.16032
[14] Virelizier, A.: Hopf group-coalgebras. J. Pure Appl. Algebra 171(1), 75–122 (2002) · Zbl 1011.16023 · doi:10.1016/S0022-4049(01)00125-6
[15] Zunino, M.: Double construction for crossed Hopf coalgebras. J. Algebra 278, 43–75 (2004) · Zbl 1058.16035 · doi:10.1016/j.jalgebra.2004.03.019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.