Solutions of a nonlinear Dirac equation with external fields. (English) Zbl 1161.35041

Summary: We study the stationary Dirac equation \[ -ic\hbar \sum^3_{k=1} \alpha_k\partial_ku + mc^2\beta u + M(x)u = R_u(x,u), \] where \(M(x)\) is a matrix potential describing the external field, and \(R(x,u)\) stands for an asymptotically quadratic nonlinearity modeling various types of interaction without any periodicity assumption. For \(\hbar\) fixed our discussion includes the Coulomb potential as a special case, and for the semiclassical situation (\(\hbar \rightarrow 0\)), we handle the scalar fields. We obtain existence and multiplicity results of stationary solutions via critical point theory.


35Q40 PDEs in connection with quantum mechanics
81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35A15 Variational methods applied to PDEs
Full Text: DOI Link


[1] Amann H., Zehnder E.: Nontrivial solutions for a class of non-resonance problems and applications to nonlinear differential equations. Ann. Sc. Norm. Super Pisa 7, 539–603 (1980) · Zbl 0452.47077
[2] Ackermans N.: On a peridic Schrödinger equation with nonlocal part. Math. Z. 248, 423–443 (2004)
[3] Balabane M., Cazenave T., Douady A., Merle F.: Existence of excited states for a nonlinear Dirac field. Comm. Math. Phys. 119, 153–176 (1988) · Zbl 0696.35158
[4] Balabane M., Cazenave T., Vazquez L.: Existence of standing waves for Dirac fields with singular nonlinearities. Comm. Math. Phys. 133, 53–74 (1990) · Zbl 0721.35065
[5] Bartsch T., Ding Y.H.: On a nonlinear Schrödinger equation with periodic potential. Math. Ann. 313, 15–37 (1999) · Zbl 0927.35103
[6] Bartsch T., Ding Y.H.: Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math. Nachr. 279, 1267–1288 (2006) · Zbl 1117.58007
[7] Bartsch T., Ding Y.H.: Solutions of nonlinear Dirac equations. J. Differ. Equ. 226, 210–249 (2006) · Zbl 1126.49003
[8] Bär C., Strohmaier A.: Semi-bounded restrictions of Dirac type operators and the unique continuation property. Differ. Geom. Appl. 15, 175–182 (2001) · Zbl 1031.58008
[9] Bjorken J.D., Drell S.D.: Relativistic Quantum Fields. McGraw-Hill, New York (1965) · Zbl 0184.54201
[10] Booss-Bavnbek B.: Unique continuation property for Dirac operator, revisited. Contemp. Math. 258, 21–32 (2000) · Zbl 1004.58011
[11] Cazenave T., Vazquez L.: Existence of local solutions for a classical nonlinear Dirac field. Comm. Math. Phys. 105, 35–47 (1986) · Zbl 0596.35117
[12] Dautray R., Lions J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 3. Springer, Berlin (1990) · Zbl 0784.73001
[13] Ding Y.H.: Multiple homoclinics in a Hamiltonian system with asymptotically or super linear terms. Commun. Contemp. Math. 8, 453–480 (2006) · Zbl 1104.70013
[14] Ding, Y.H., Jeanjean, L.: Homoclinics in a Hamiltonian system without periodicity (preprint)
[15] Ding Y.H., Szulkin A.: Bound states for semilinear Schrödinger equations with sign-changing potential. Calc. Var. & PDEs 29, 397–419 (2007) · Zbl 1119.35082
[16] Edmunds D.E., Evans W.D.: Spectral Theory and Differential Operators. Clarendon Press, Oxford (1987) · Zbl 0628.47017
[17] Esteban M.J., Séré E.: Stationary states of the nonlinear Dirac equation: a variational approach. Comm. Math. Phys. 171, 323–350 (1995) · Zbl 0843.35114
[18] Esteban M.J., Séré E.: An overview on linear and nonlinear Dirac equations. Discr. Contin. Dyn. Syst. 8, 281–397 (2002) · Zbl 1162.49307
[19] Finkelstein R., Fronsdal C.F., Kaus P.: Nonlinear spinor field theory. Phys. Rev. 103, 1571–1579 (1956) · Zbl 0073.44705
[20] Grandy W.T.: Relativistic Quantum Mechanics of Leptons and Fields, Fundamental Theories of Physics, vol. 41. Kluwer, Dordrecht (1991)
[21] Griesemer M., Siedentop H.: A minimax principle for the eigenvalues in spectral gaps. J. Lond. Math. Soc. 60, 490–500 (1999) · Zbl 0952.47022
[22] Jörgens, K.: Perturbations of the Dirac Operator. Proceedings of the conference on the theory of ordinary and partial differential equations, Dundee (Scotland) 1972, p. 87–102. (Eds. W.N. Everitt and B.D. Sleeman) Lecture Notes in Mathematics 280, Springer, Berlin, 1972 · Zbl 0245.35070
[23] Kryszewki W., Szulkin A.: Generalized linking theorem with an application to semilinear Schrödinger equation. Adv. Differ. Equ. 3, 441–472 (1998) · Zbl 0947.35061
[24] Merle F.: Existence of stationary states for nonlinear Dirac equations. J. Differ. Equ. 74, 50–68 (1988) · Zbl 0696.35154
[25] Ranada, A.F.: Classical Nonlinear Dirac Field Models of Extended Particles. In: Barut, A.O. (ed.) Quantum Theory, Groups, Fields and Particles. Reidel, Amsterdam (1982)
[26] Reed M., Simon B.: Methods of Mathematical Physics. Vol. I–IV. Academic Press, London (1978) · Zbl 0401.47001
[27] Soler M.: Classical stable nonlinear spinor field with positive rest energy. Phys. Rev. D 1, 2766–2769 (1970)
[28] Stuart C.A., Zhou H.S.: Axisymmetric TE-Modes in a self-focusing Dielectric, SIAM J. Math. Anal. 137, 218–237 (2005) · Zbl 1099.78013
[29] Thaller B.: The Dirac Equation, Texts and Monographs in Physics. Springer, Berlin (1992)
[30] Triebel H.: Interpolation Theory, Function Spaces, Differential Operators. North-Holland, Amsterdam (1978) · Zbl 0387.46032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.