×

A multiplicity result for a special class of gradient-type systems with non-differentiable term. (English) Zbl 1161.47046

The authors prove the existence of multiple solutions of certain systems of hemivariational inequalities, employing a recent minimax result of B.Ricceri [Proc.Am.Math.Soc.133, No.11, 3255–3261 (2005; Zbl 1069.47068)]. The obtained results are combined with the principle of symmetric criticality in order to get multiple solutions of systems of hemivariational inequalities over certain Sobolev spaces.

MSC:

47J20 Variational and other types of inequalities involving nonlinear operators (general)
49J52 Nonsmooth analysis

Citations:

Zbl 1069.47068
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bartsch, T.; de Figueiredo, D. G., Infinitely many solutions of nonlinear elliptic systems, Progr. Nonlinear Differential Equations Appl., 35, 51-67 (1999) · Zbl 0922.35049
[2] Bartsch, T.; Wang, Z. Q., Existence and multiplicity results for some superlinear elliptic problems on \(R^N\), Comm. Partial Differential Equations, 20, 1725-1741 (1995) · Zbl 0837.35043
[3] Boccardo, L.; de Figueiredo, D. G., Some remarks on a system of quasilinear elliptic equations, Nonlinear Differential Equations Appl., 9, 309-323 (2002) · Zbl 1011.35050
[4] Breckner, B. E.; Varga, Cs., A multiplicity result for gradient-type systems with non-differentiable term, Acta Math. Hungar., 118, 1-2, 85-104 (2008) · Zbl 1164.47063
[5] Cammaroto, F.; Chinnì, A.; Di Bella, B., Multiple solutions for a quasilinear elliptic variational system on strip-like domains, Proc. Edinb. Math. Soc., 50, 3, 597-603 (2007) · Zbl 1136.35062
[6] Chabrowski, J., Variational Methods for Potential Operator Equations (1997), De Gruyter: De Gruyter Berlin, New York · Zbl 0895.35036
[7] Clarke, F. H., Nonsmooth Analysis (1983), John Wiley & Sons: John Wiley & Sons New York · Zbl 0727.90045
[8] Costa, D. G., On a class of elliptic system in \(R^N\), Electron. J. Differential Equations, 111, 103-122 (1994) · Zbl 0803.35052
[9] Dinu, T.-L., Entire solutions of Schrödinger elliptic systems with discontinuous nonlinearity and sign-changing potential, Math. Model. Anal., 11, 3, 1-14 (2006) · Zbl 1112.35067
[10] Dinu, T.-L., Standing wave solutions of Schrödinger systems with discontinuous nonlinearity in anisotropic media, Int. J. Math. Math. Sci. (2006), Art. ID 73619, 13 pp · Zbl 1137.35067
[11] Fan, X. L.; Zhao, Y. Z., Linking and multiplicity results for the \(p\)-Laplacian on unbounded cylinders, J. Math. Anal. Appl., 260, 479-489 (2001) · Zbl 1001.35027
[12] Felmer, P.; Manásevich, R.; de Thélin, F., Existence and uniqueness of positive solutions for certain quasilinear elliptic systems, Comm. Partial Differential Equations, 17, 2013-2029 (1992) · Zbl 0813.35020
[13] de Figueiredo, D. G., Semilinear Elliptic Systems, Nonlinear Functional Analysis and Applications to Differential Equations, Trieste, 1997 (1998), World Science Publ.: World Science Publ. River Edge, NJ, p. 122-152
[14] Efimov, N. V.; Stechkin, S. B., Approximate compactness and Chebyshev sets, Soviet Math. Dokl., 2, 1226-1228 (1961) · Zbl 0103.08101
[15] Grossinho, M. R., Some existence and bifurcation results for nonlinear elliptic problems in strip-like domains, Ric. Mat., 36, 127-138 (1987) · Zbl 0703.35015
[16] Krawcewicz, W.; Marzantowicz, W., Some remarks on the Lusternik-Schnirelman method for non-differentiable functionals invariant with respect to a finite group action, Rocky Mountain J. Math., 20, 4, 1041-1049 (1990) · Zbl 0728.58005
[17] Kristály, A., An existence result for gradient-type systems with a nondifferentiable term on unbounded strips, J. Math. Anal. Appl., 229, 186-2004 (2004) · Zbl 1129.35423
[18] Kristály, A., Existence of two non-trivial solutions for a class of quasilinear elliptic variational systems on stripe-like domains, Proc. Edinb. Math. Soc., 48, 1-13 (2005)
[19] Kristály, A., Existence of nonzero weak solutions for a class of elliptic variational inclusions systems in \(R^N\), Nonlinear Anal., 65, 1578-1594 (2006) · Zbl 1233.35208
[20] A. Kristály, Cs. Varga, An introduction to critical point theory for non-smooth functions, Casa Cărţii de Ştiinţă Cluj-Napoca, 2004; A. Kristály, Cs. Varga, An introduction to critical point theory for non-smooth functions, Casa Cărţii de Ştiinţă Cluj-Napoca, 2004
[21] Lions, P. L., Symétrie et compacité dans les espaces de Sobolev, J. Funct. Anal., 49, 312-334 (1982) · Zbl 0501.46032
[22] Motreanu, D.; Panagiotopoulos, P. D., (Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities. Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities, Nonconvex Optimization and its Application, vol. 29 (1999), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht) · Zbl 1060.49500
[23] Motreanu, D.; Varga, Cs., A nonsmooth equivariant minimax principle, Commun. Appl. Anal., 3, 115-130 (1999) · Zbl 0922.49003
[24] Ricceri, B., A further improvement of a minimax theorem of Borenshtein and Shul’man, J. Nonlinear Convex Anal., 2, 279-283 (2001) · Zbl 1045.49002
[25] Ricceri, B., A general multiplicity theorem for certain nonlinear equations in Hilbert spaces, Proc. Amer. Math. Soc., 133, 3255-3261 (2005) · Zbl 1069.47068
[26] Tsar’kov, I. G., Nonunique solvability of certain differential equations and their connection with geometric approximation theory, Math. Notes, 75, 259-271 (2004) · Zbl 1110.47313
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.