×

zbMATH — the first resource for mathematics

Discontinuity detection in multivariate space for stochastic simulations. (English) Zbl 1161.65307
Summary: Edge detection has traditionally been associated with detecting physical space jump discontinuities in one dimension, e.g. seismic signals, and two dimensions, e.g. digital images. Hence most of the research on edge detection algorithms is restricted to these contexts. High dimension edge detection can be of significant importance, however. For instance, stochastic variants of classical differential equations not only have variables in space/time dimensions, but additional dimensions are often introduced to the problem by the nature of the random inputs. The stochastic solutions to such problems sometimes contain discontinuities in the corresponding random space and a prior knowledge of jump locations can be very helpful in increasing the accuracy of the final solution. Traditional edge detection methods typically require uniform grid point distribution. They also often involve the computation of gradients and/or Laplacians, which can become very complicated to compute as the number of dimensions increases. The polynomial annihilation edge detection method, on the other hand, is more flexible in terms of its geometric specifications and is furthermore relatively easy to apply. This paper discusses the numerical implementation of the polynomial annihilation edge detection method to high dimensional functions that arise when solving stochastic partial differential equations.

MSC:
65C30 Numerical solutions to stochastic differential and integral equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Archibald, R.; Gelb, A.; Yoon, J., Polynomial Fitting for edge detection in irregularly sampled signals and images, SIAM J. numer. anal., 43, 1, 259-279, (2005) · Zbl 1093.41009
[2] Archibald, R.; Gelb, A.; Yoon, J., Determining the locations and discontinuities in the derivatives of functions, Appl. numer. math., 58, 5, 577-592, (2008) · Zbl 1141.65011
[3] Babuska, I.; Tempone, R.; Zouraris, G.E., Galerkin finite element approximations of stochastic elliptic differential equations, SIAM J. numer. anal., 42, 800-825, (2004) · Zbl 1080.65003
[4] R. Bauer, Band Pass Filters for Determining Shock Locations, Ph.D. Thesis, Applied Mathematics, Brown University, 1995.
[5] Canny, J., A computational approach to edge detection, IEEE trans. pattern anal. Mach. intell., 8, 679-698, (1986)
[6] Canuto, C.; Hussaini, M.; Quarteroni, A.; Zang, T., Spectral methods in fluid dynamics, (1988), Springer Verlag · Zbl 0658.76001
[7] Gardner, T.; Cantor, C.; Collins, J., Construction of a genetic toggle switch in Escherichia coli, Nature, 403, 339-342, (2000)
[8] Gelb, A.; Tadmor, E., Adaptive edge detectors for piecewise smooth data based on the minmod limiter, J. sci. comput., 28, 2-3, 279-306, (2006) · Zbl 1103.65143
[9] Ganapathysubramanian, B.; Zabaras, N., Sparse grid collocation schemes for stochastic natural convection problems, J. comput. phys., 225, 652-685, (2007) · Zbl 1343.76059
[10] Ghanem, R.; Spanos, P., Stochastic finite elements: A spectral approach, (1991), Springer Verlag · Zbl 0722.73080
[11] Gottlieb, D.; Orszag, S., Numerical analysis of spectral methods: theory and applications, (1977), CBMS-NSF, SIAM Philadelphia, PA
[12] Gottlieb, D.; Xiu, D., Galerkin method for wave equations with uncertain coefficients, Commun. comput. phys., 3, 2, 505-518, (2008) · Zbl 1195.65009
[13] Hesthaven, J.; Gottlieb, S.; Gottlieb, D., Spectral methods for time-dependent problems, (2007), Cambridge University Press · Zbl 1111.65093
[14] Le Maitre, O.; Knio, O.; Najm, H.; Ghanem, R., Uncertainty propagation using wiener – haar expansions, J. comput. phys., 197, 28-57, (2004) · Zbl 1052.65114
[15] Le Maitre, O.; Knio, O.; Najm, H.; Ghanem, R., Multi-resolution analysis of Wiener-type uncertainty propagation schemes, J. comput. phys., 197, 502-531, (2004) · Zbl 1056.65006
[16] Lin, G.; Su, C.-H.; Karniadakis, G.E., The stochastic piston problem, Proc. natl. acad. sci., 101, 15840-15845, (2004) · Zbl 1135.76334
[17] Sobel, I., An isotropic \(3 \times 3\) image gradient operator, ()
[18] Vapnik, V.N., The nature of statistical learning theory, (1995), Springer · Zbl 0934.62009
[19] Wan, X.; Karniadakis, G., Multi-element generalized polynomial chaos for arbitrary probability measures, SIAM J. sci. comput., 28, 901-928, (2006) · Zbl 1128.65009
[20] Xiu, D., Efficient collocational approach for parametric uncertainty analysis, Commun. comput. phys., 2, 2, 293-309, (2007) · Zbl 1164.65302
[21] Xiu, D., Fast numerical methods for stochastic computations: a review, Commun. comput. phys., 5, 242-272, (2009) · Zbl 1364.65019
[22] Xiu, D.; Hesthaven, J.S., High-order collocation methods for differential equations with random inputs, SIAM J. sci. comput., 27, 1118-1139, (2005) · Zbl 1091.65006
[23] Xiu, D.; Karniadakis, G., The wiener – askey polynomial chaos for stochastic differential equations, SIAM J. sci. comput., 24, 2, 619-644, (2002) · Zbl 1014.65004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.