Goodness-of-fit tests for copulas: A review and a power study. (English) Zbl 1161.91416

Summary: Many proposals have been made recently for goodness-of-fit testing of copula models. After reviewing them briefly, the authors concentrate on “blanket tests”, i.e., those whose implementation requires neither an arbitrary categorization of the data nor any strategic choice of smoothing parameter, weight function, kernel, window, etc. The authors present a critical review of these procedures and suggest new ones. They describe and interpret the results of a large Monte Carlo experiment designed to assess the effect of the sample size and the strength of dependence on the level and power of the blanket tests for various combinations of copula models under the null hypothesis and the alternative. To circumvent problems in the determination of the limiting distribution of the test statistics under composite null hypotheses, they recommend the use of a double parametric bootstrap procedure, whose implementation is detailed. They conclude with a number of practical recommendations.


91B30 Risk theory, insurance (MSC2010)
91B82 Statistical methods; economic indices and measures
62P05 Applications of statistics to actuarial sciences and financial mathematics
Full Text: DOI


[1] Abdous, B.; Genest, C.; Rémillard, B., Dependence properties of meta-elliptical distributions, (), 1-15
[2] Andersen, P.K.; Ekstrøm, C.T.; Klein, J.P.; Shu, Y.; Zhang, M.-J., A class of goodness of fit tests for a copula based on bivariate right-censored data, Biometrical journal, 47, 815-824, (2005)
[3] Ané, T.; Kharoubi, C., Dependence structure and risk measure, Journal of business, 76, 411-438, (2003)
[4] Barbe, P.; Genest, C.; Ghoudi, K.; Rémillard, B., On kendall’s process, Journal of multivariate analysis, 58, 197-229, (1996) · Zbl 0862.60020
[5] Beaudoin, D., 2007. Estimation de la dépendance et choix de modèles pour des données bivariées sujettes à censure et à troncation. PhD thesis, Université Laval, Québec, Canada
[6] Berg, D., Bakken, H., 2005. A goodness-of-fit test for copulae based on the probability integral transform. Technical Report SAMBA/ 41/05, Norsk Regnesentral, Oslo, Norway
[7] Breymann, W.; Dias, A.; Embrechts, P., Dependence structures for multivariate high-frequency data in finance, Quantitative finance, 3, 1-14, (2003) · Zbl 1408.62173
[8] Burzykowski, T.; Molenberghs, G.; Buyse, M., The validation of surrogate end points by using data from randomized clinical trials: A case-study in advanced colorectal cancer, Journal of the royal statistical society series A, 167, 103-124, (2004)
[9] Chen, X.; Fan, Y.; Tsyrennikov, V., Efficient estimation of semiparametric multivariate copula models, Journal of the American statistical association, 101, 1228-1240, (2006) · Zbl 1120.62312
[10] Cherubini, U.; Luciano, E.; Vecchiato, W., Copula methods in finance, (2004), Wiley New York · Zbl 1163.62081
[11] Clayton, D.G., A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence, Biometrika, 65, 141-151, (1978) · Zbl 0394.92021
[12] Cook, R.D.; Johnson, M.E., A family of distributions for modelling nonelliptically symmetric multivariate data, Journal of the royal statistical society series B, 43, 210-218, (1981) · Zbl 0471.62046
[13] Cui, S.; Sun, Y., Checking for the gamma frailty distribution under the marginal proportional hazards frailty model, Statistica sinica, 14, 249-267, (2004) · Zbl 1054.62118
[14] Deheuvels, P., La fonction de dépendance empirique et ses propriétés: un test non paramétrique d’indépendance, Académie royale de belgique. bulletin de la classe des sciences, 5e Série, 65, 274-292, (1979) · Zbl 0422.62037
[15] Dobrić, J.; Schmid, F., Testing goodness of fit for parametric families of copulas: application to financial data, Communications in statistics. simulation and computation, 34, 1053-1068, (2005) · Zbl 1080.62040
[16] Dobrić, J.; Schmid, F., A goodness of fit test for copulas based on rosenblatt’s transformation, Computational statistics & data analysis, 51, 4633-4642, (2007) · Zbl 1162.62343
[17] Fang, H.-B.; Fang, K.-T.; Kotz, S., The meta-elliptical distributions with given marginals, Journal of multivariate analysis, 82, 1-16, (2002) · Zbl 1002.62016
[18] Fang, H.-B.; Fang, K.-T.; Kotz, S., Corrigendum to: “the meta-elliptical distributions with given marginals” [J. multivariate anal. 82: 1-16 (2002)], Journal of multivariate analysis, 94, 222-223, (2005)
[19] Faraggi, D.; Korn, E.L., Competing risks with frailty models when treatment affects only one failure type, Biometrika, 83, 467-471, (1996) · Zbl 0865.62076
[20] Fermanian, J.-D., Goodness-of-fit tests for copulas, Journal of multivariate analysis, 95, 119-152, (2005) · Zbl 1095.62052
[21] Fermanian, J.-D.; Radulović, D.; Wegkamp, M.H., Weak convergence of empirical copula processes, Bernoulli, 10, 847-860, (2004) · Zbl 1068.62059
[22] Frahm, G.; Junker, M.; Szimayer, A., Elliptical copulas: applicability and limitations, Statistics & probability letters, 63, 275-286, (2003) · Zbl 1116.62352
[23] Frees, E.W.; Valdez, E.A., Understanding relationships using copulas, North American actuarial journal, 2, 1-25, (1998) · Zbl 1081.62564
[24] Gänßler, P.; Stute, W., Seminar on empirical processes, (1987), Birkhäuser Verlag Basel, Switzerland
[25] Genest, C., Frank’s family of bivariate distributions, Biometrika, 74, 549-555, (1987) · Zbl 0635.62038
[26] Genest, C.; Favre, A.-C., Everything you always wanted to know about copula modeling but were afraid to ask, Journal of hydrologic engineering, 12, 347-368, (2007)
[27] Genest, C.; Ghoudi, K.; Rivest, L.-P., A semiparametric estimation procedure of dependence parameters in multivariate families of distributions, Biometrika, 82, 543-552, (1995) · Zbl 0831.62030
[28] Genest, C.; Quessy, J.-F.; Rémillard, B., Goodness-of-fit procedures for copula models based on the integral probability transformation, Scandinavian journal of statistics, 33, 337-366, (2006) · Zbl 1124.62028
[29] Genest, C., Rémillard, B., 2008. Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models, Annales de I’Institut Henri Poincaré. Probabilités et Statistiques 44 (in press)
[30] Genest, C.; Rivest, L.-P., Statistical inference procedures for bivariate Archimedean copulas, Journal of the American statistical association, 88, 1034-1043, (1993) · Zbl 0785.62032
[31] Genest, C.; Werker, B.J.M., Conditions for the asymptotic semiparametric efficiency of an omnibus estimator of dependence parameters in copula models, (), 103-112 · Zbl 1142.62330
[32] Ghoudi, K.; Rémillard, B., Empirical processes based on pseudo-observations. II. the multivariate case, (), 381-406 · Zbl 1079.60024
[33] Glidden, D.V., Checking the adequacy of the gamma frailty model for multivariate failure times, Biometrika, 86, 381-393, (1999) · Zbl 1054.62601
[34] Gumbel, E.J., Distributions des valeurs extrêmes en plusieurs dimensions, Publications de l’institut de statistique de l’université de Paris, 9, 171-173, (1960) · Zbl 0093.15303
[35] Joe, H., Multivariate models and dependence concepts, (1997), Chapman & Hall London · Zbl 0990.62517
[36] Joe, H., Asymptotic efficiency of the two-stage estimation method for copula-based models, Journal of multivariate analysis, 94, 401-419, (2005) · Zbl 1066.62061
[37] Jouini, M.N.; Clemen, R.T., Copula models for aggregating expert opinions, Operations research, 44, 444-457, (1996) · Zbl 0864.90067
[38] Junker, M.; May, A., Measurement of aggregate risk with copulas, The econometrics journal, 8, 428-454, (2005) · Zbl 1125.91351
[39] Kim, G.; Silvapulle, M.J.; Silvapulle, P., Comparison of semiparametric and parametric methods for estimating copulas, Communications in statistics. simulation and computation, 51, 2836-2850, (2007) · Zbl 1161.62364
[40] Klaassen, C.A.J.; Wellner, J.A., Efficient estimation in the bivariate normal copula model: normal margins are least favourable, Bernoulli, 3, 55-77, (1997) · Zbl 0877.62055
[41] Klugman, S.; Parsa, R., Fitting bivariate loss distributions with copulas, Insurance: mathematics & economics, 24, 139-148, (1999) · Zbl 0931.62044
[42] Malevergne, Y.; Sornette, D., Testing the Gaussian copula hypothesis for financial assets dependences, Quantitative finance, 3, 231-250, (2003) · Zbl 1408.62177
[43] McNeil, A.J.; Frey, R.; Embrechts, P., Quantitative risk management, (2005), Princeton University Press Princeton, NJ · Zbl 1089.91037
[44] Nelsen, R.B., Properties of a one-parameter family of bivariate distributions with specified marginals, Communications in statistics A. theory and methods, 15, 3277-3285, (1986) · Zbl 0616.62067
[45] Nelsen, R.B., An introduction to copulas, (2006), Springer New York · Zbl 1152.62030
[46] Oakes, D., Bivariate survival models induced by frailties, Journal of the American statistical association, 84, 487-493, (1989) · Zbl 0677.62094
[47] Panchenko, V., Goodness-of-fit test for copulas, Physica A, 355, 176-182, (2005)
[48] Plackett, R.L., A class of bivariate distributions, Journal of the American statistical association, 60, 516-522, (1965)
[49] Rosenblatt, M., Remarks on a multivariate transformation, The annals of mathematical statistics, 23, 470-472, (1952) · Zbl 0047.13104
[50] Scaillet, O., Kernel based goodness-of-fit tests for copulas with fixed smoothing parameters, Journal of multivariate analysis, 98, 533-543, (2007) · Zbl 1107.62037
[51] Shih, J.H., A goodness-of-fit test for association in a bivariate survival model, Biometrika, 85, 189-200, (1998) · Zbl 0904.62058
[52] Shih, J.H.; Louis, T.A., Inferences on the association parameter in copula models for bivariate survival data, Biometrics, 51, 1384-1399, (1995) · Zbl 0869.62083
[53] Shorack, G.R.; Wellner, J.A., Empirical processes with applications to statistics, (1986), Wiley New York · Zbl 1170.62365
[54] Tsukahara, H., Semiparametric estimation in copula models, The Canadian journal of statistics, 33, 357-375, (2005) · Zbl 1077.62022
[55] Wang, W.; Wells, M.T., Model selection and semiparametric inference for bivariate failure-time data, Journal of the American statistical association, 95, 62-72, (2000) · Zbl 0996.62091
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.