×

zbMATH — the first resource for mathematics

Regularity criterion for weak solutions to the Navier-Stokes equations in terms of the gradient of the pressure. (English) Zbl 1162.35060
Summary: We prove a regularity criterion \(\nabla \pi \in L^{2/3}(0,T;BMO)\) for weak solutions to the Navier-Stokes equations in three-space dimensions. This improves the available result with \(L^{2/3}(0,T;L^{\infty})\).

MSC:
35Q30 Navier-Stokes equations
76D05 Navier-Stokes equations for incompressible viscous fluids
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] doi:10.1007/BF02547354 · JFM 60.0726.05 · doi:10.1007/BF02547354
[2] doi:10.1007/BF00253344 · Zbl 0106.18302 · doi:10.1007/BF00253344
[4] doi:10.1007/BF00281533 · Zbl 0254.35097 · doi:10.1007/BF00281533
[5] doi:10.1016/0022-0396(86)90096-3 · Zbl 0577.35058 · doi:10.1016/0022-0396(86)90096-3
[6] doi:10.1002/cpa.3160410404 · Zbl 0632.76034 · doi:10.1002/cpa.3160410404
[7] doi:10.1007/BF01210782 · Zbl 0574.35070 · doi:10.1007/BF01210782
[8] doi:10.1070/RM2003v058n02ABEH000609 · Zbl 1064.35134 · doi:10.1070/RM2003v058n02ABEH000609
[10] doi:10.1016/S0362-546X(00)00163-2 · Zbl 1007.35064 · doi:10.1016/S0362-546X(00)00163-2
[11] doi:10.1090/S0002-9939-02-06697-2 · Zbl 1075.35031 · doi:10.1090/S0002-9939-02-06697-2
[12] doi:10.1090/S0002-9939-06-08663-1 · Zbl 1126.35047 · doi:10.1090/S0002-9939-06-08663-1
[13] doi:10.1016/j.jde.2008.02.030 · Zbl 1143.35081 · doi:10.1016/j.jde.2008.02.030
[14] doi:10.1090/S0002-9939-05-08312-7 · Zbl 1075.35044 · doi:10.1090/S0002-9939-05-08312-7
[15] doi:10.1007/s00021-005-0198-y · Zbl 1131.35060 · doi:10.1007/s00021-005-0198-y
[16] doi:10.1007/s002090000130 · Zbl 0970.35099 · doi:10.1007/s002090000130
[17] doi:10.1016/j.jmaa.2004.08.058 · Zbl 1095.42012 · doi:10.1016/j.jmaa.2004.08.058
[18] doi:10.1007/s00209-007-0258-5 · Zbl 1151.46019 · doi:10.1007/s00209-007-0258-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.