Yan, Xiang-Ping; Li, Wan-Tong Stability and Hopf bifurcation for a delayed cooperative system with diffusion effects. (English) Zbl 1162.35319 Int. J. Bifurcation Chaos Appl. Sci. Eng. 18, No. 2, 441-453 (2008). Cited in 14 Documents MSC: 35B32 Bifurcations in context of PDEs 35K50 Systems of parabolic equations, boundary value problems (MSC2000) 35B35 Stability in context of PDEs 35K57 Reaction-diffusion equations 37N25 Dynamical systems in biology 92D25 Population dynamics (general) Keywords:Neumann boundary conditions; positive equilibrium; spatially homogeneous Hopf bifurcation; spatially inhomogeneous Hopf bifurcation; normal form theory; center manifold reduction; numerical simulations PDF BibTeX XML Cite \textit{X.-P. Yan} and \textit{W.-T. Li}, Int. J. Bifurcation Chaos Appl. Sci. Eng. 18, No. 2, 441--453 (2008; Zbl 1162.35319) Full Text: DOI OpenURL References: [1] DOI: 10.1006/jdeq.1996.0003 · Zbl 0854.35120 [2] DOI: 10.1086/283384 [3] DOI: 10.1016/B978-0-12-148360-9.50007-X [4] DOI: 10.1007/978-1-4612-9892-2 [5] DOI: 10.1006/jmaa.1997.5632 · Zbl 0893.34036 [6] Huang W., J. Diff. Integ. Eqs. 4 pp 1303– [7] Kuang Y., Delay Differential Equations with Application in Population Dynamics (1993) · Zbl 0777.34002 [8] DOI: 10.1017/S0308210500021090 · Zbl 0801.35062 [9] DOI: 10.1142/S0218127404011867 · Zbl 1074.35055 [10] DOI: 10.1137/0520037 · Zbl 0685.34070 [11] DOI: 10.1016/0362-546X(91)90164-V · Zbl 0729.35138 [12] DOI: 10.1007/978-3-662-08539-4 [13] DOI: 10.1007/978-1-4612-4050-1 [14] DOI: 10.1016/j.physd.2006.12.007 · Zbl 1123.34055 [15] Yoshida K., Hiroshima Math. J. 12 pp 321– [16] DOI: 10.1016/S0960-0779(02)00068-1 · Zbl 1038.35147 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.