×

zbMATH — the first resource for mathematics

A third-order modification of Newton’s method for multiple roots. (English) Zbl 1162.65342
Summary: We present a new third-order modification of Newton’s method for multiple roots, which is based on existing third-order multiple root-finding methods. Numerical examples show that the new method is competitive to other methods for multiple roots.

MSC:
65H05 Numerical computation of solutions to single equations
Software:
Maple
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Schröder, E., Über unendlich viele algorithmen zur auflösung der gleichungen, Math. ann., 2, 317-365, (1870)
[2] Traub, J.F., Iterative methods for the solution of equations, (1964), Prentice Hall New Jersey · Zbl 0121.11204
[3] Hansen, E.; Patrick, M., A family of root finding methods, Numer. math., 27, 257-269, (1977) · Zbl 0361.65041
[4] Victory, H.D.; Neta, B., A higher order method for multiple zeros of nonlinear functions, Int. J. comput. math., 12, 329-335, (1983) · Zbl 0499.65026
[5] Dong, C., A basic theorem of constructing an iterative formula of the higher order for computing multiple roots of an equation, Math. numer. sinica, 11, 445-450, (1982) · Zbl 0511.65030
[6] Dong, C., A family of multipoint iterative functions for finding multiple roots of equations, Int. J. comput. math., 21, 363-367, (1987) · Zbl 0656.65050
[7] Neta, B.; Johnson, A.N., High order nonlinear solver for multiple roots, Comput. math. appl., 55, 2012-2017, (2008) · Zbl 1142.65044
[8] B. Neta, Extension of Murakami’s High order nonlinear solver to multiple roots, Int. J. Comput. Math., in press, doi:10.1080/00207160802272263. · Zbl 1192.65052
[9] Werner, W., Iterationsverfahren höherer ordnung zur Lösung nicht linearer gleichungen, Z. angew. math. mech., 61, T322-T324, (1981) · Zbl 0494.65024
[10] B. Neta, Numerical Methods for the Solution of Equations, Net-A-Sof, California, 1983. · Zbl 0514.65029
[11] Halley, E., A new, exact and easy method of finding the roots of equations generally and that without any previous reduction, Phil. trans. roy. soc. London, 18, 136-148, (1694)
[12] King, R.F., A family of fourth order methods for nonlinear equations, SIAM J. numer. anal., 10, 876-879, (1973) · Zbl 0266.65040
[13] Jarratt, P., Some fourth order multipoint methods for solving equations, Math. comput., 20, 434-437, (1966) · Zbl 0229.65049
[14] Osada, N., An optimal multiple root-finding method of order three, J. comput. appl. math., 51, 131-133, (1994) · Zbl 0814.65045
[15] Jarratt, P., Multipoint iterative methods for solving certain equations, Comput. J., 8, 398-400, (1966) · Zbl 0141.13404
[16] Murakami, T., Some fifth order multipoint iterative formulae for solving equations, J. inform. process., 1, 138-139, (1978) · Zbl 0394.65015
[17] Chun, C., A simply constructed third-order modifications of newton’s method, J. comput. appl. math., (2007)
[18] Redfern, D., The Maple handbook, (1994), Springer-Verlag New York · Zbl 0820.68002
[19] Neta, B., New third order nonlinear solvers for multiple roots, Appl. math. comput., 202, 162-170, (2008) · Zbl 1151.65041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.