×

zbMATH — the first resource for mathematics

An approximation of the analytical solution of the linear and nonlinear integro-differential equations by homotopy perturbation method. (English) Zbl 1162.65419
Summary: This paper aims to introduce an analytic technique, namely the homotopy perturbation method for the solution of integro-differential equations. From the computational viewpoint, the comparison shows that the homotopy perturbation method is efficient and easy to use.

MSC:
65R20 Numerical methods for integral equations
45J05 Integro-ordinary differential equations
45G10 Other nonlinear integral equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adomian, G.: Nonlinear Stochastic Operator Equations. Academic, San Diego (1986) · Zbl 0609.60072
[2] Adomian, G.: Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic, Dordrecht (1994) · Zbl 0802.65122
[3] Adomian, G.: Math. Comput. Model. 13(7), 17 (1992). doi: 10.1016/0895-7177(90)90125-7 · Zbl 0713.65051 · doi:10.1016/0895-7177(90)90125-7
[4] Adomian, G., Rach, R.: Comput. Math. Appl. 24(11), 61 (1992). doi: 10.1016/0898-1221(92)90031-C · Zbl 0777.35018 · doi:10.1016/0898-1221(92)90031-C
[5] Sadigh, A., Ganji, D.D.: Phys. Lett. A 372, 465 (2008). doi: 10.1016/j.physleta.2007.07.065 · Zbl 1217.81069 · doi:10.1016/j.physleta.2007.07.065
[6] He, J.H.: Non-perturbative methods for strongly nonlinear problems. Dissertation, de-Verlag im Internet GmbH, Berlin (2006)
[7] He, J.H.: Appl. Math. Comput. 114, 115 (2000). doi: 10.1016/S0096-3003(99)00104-6 · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[8] He, J.H., Wu, X.H.: Chaos Solitons Fractals 29(1), 108 (2006). doi: 10.1016/j.chaos.2005.10.100 · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[9] Ganji, D.D., Afrouzi, G.A., Hosseinzadeh, H., Talarposhti, R.A.: Phys. Lett. A 371, 20 (2007). doi: 10.1016/j.physleta.2007.06.003 · Zbl 1209.65145 · doi:10.1016/j.physleta.2007.06.003
[10] He, J.H.: Int. J. Mod. Phys. B 20(18), 2561 (2006). doi: 10.1142/S0217979206034819 · doi:10.1142/S0217979206034819
[11] He, J.H.: Int. J. Mod. Phys. B 20(10), 1141 (2006). doi: 10.1142/S0217979206033796 · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[12] He, J.H.: Int. J. Nonlinear Sci. Numer. Simul. 6(2), 207 (2005)
[13] He, J.H.: Int. J. Non-linear Mech. 35(1), 37 (2000). doi: 10.1016/S0020-7462(98)00085-7 · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[14] Biazar, J., Ghazvini, H., Eslami, M.: Chaos Solitons Fractals (2007). doi: 10.1016/j.chaos.2007.06.oo1
[15] Biazar, J., Ghazvini, H.: Phys. Lett. A 366, 79 (2007). doi: 10.1016/j.physleta.2007.01.060 · Zbl 1203.65207 · doi:10.1016/j.physleta.2007.01.060
[16] He, J.H.: Chaos Solitons Fractals 26(3), 695 (2005). doi: 10.1016/j.chaos.2005.03.006 · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[17] Ganji, D.D., Sadighi, A.: Int. J. Nonlinear Sci. Numer. Simul. 7(4), 411 (2006)
[18] Rafei, M., Ganji, D.D.: Int. J. Nonlinear Sci. Numer. Simul. 7(3), 321 (2006)
[19] Ganji, D.D.: Phys. Lett. A 355, 337 (2006). doi: 10.1016/j.physleta.2006.02.056 · Zbl 1255.80026 · doi:10.1016/j.physleta.2006.02.056
[20] Rafei, M., Ganji, D.D., Daniali, H., Pashaei, H.: J. Sound Vib. 305, 614 (2007) · Zbl 1242.65154 · doi:10.1016/j.jsv.2007.04.020
[21] Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. CRC Press, Chapman & Hall, Boca Raton (2003)
[22] Liao, S.J.: Appl. Math. Comput. 147, 499 (2004). doi: 10.1016/S0096-3003(02)00790-7 · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[23] Liao, S.J.: Appl. Math. Comput. 169, 186 (2005). doi: 10.1016/j.amc.2004.10.058 · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058
[24] Abbasbandy, S.: Int. Commun. Heat Mass Transf. 34, 380 (2007). doi: 10.1016/j.icheatmasstransfer.2006.12.001 · doi:10.1016/j.icheatmasstransfer.2006.12.001
[25] Abbasbandy, S.: Phys. Lett. A 360, 109 (2006). doi: 10.1016/j.physleta.2006.07.065 · Zbl 1236.80010 · doi:10.1016/j.physleta.2006.07.065
[26] Abbasbandy, S., Parkes, E.J.: Chaos Solitons Fractals 36, 581 (2008). doi: 10.1016/j.chaos.2007.10.034 · Zbl 1139.76013 · doi:10.1016/j.chaos.2007.10.034
[27] Zhu, S.D.: Int. J. Nonlinear Sci. Numer. Simul. 8(3), 461 (2007)
[28] Zhu, S.D.: Int. J. Nonlinear Sci. Numer. Simul. 8(3), 465 (2007)
[29] Ebaid, A.: Phys. Lett. A 365, 213 (2007). doi: 10.1016/j.physleta.2007.01.009 · Zbl 1203.35213 · doi:10.1016/j.physleta.2007.01.009
[30] Wazwaz, A.M.: A First Course in Integral Equations. World Scientific, Singapore (1997) · Zbl 0924.45001
[31] Yalcinbas, S., Sezer, M.: Appl. Math. Comput. 112, 291 (2000). doi: 10.1016/S0096-3003(99)00059-4 · Zbl 1023.65147 · doi:10.1016/S0096-3003(99)00059-4
[32] Wazwaz, A.M.: Appl. Math. Comput. 100, 13 (1999). doi: 10.1016/S0096-3003(98)00018-6 · Zbl 0953.92026 · doi:10.1016/S0096-3003(98)00018-6
[33] Darania, P., Ebadian, A.: A.M. Int. J. Contemp. Math. Sci. 1, 651 (2006)
[34] Momani, S., Noor, M.A.: Appl. Math. Comput. 182, 754 (2006). doi: 10.1016/j.amc.2006.04.041 · Zbl 1107.65120 · doi:10.1016/j.amc.2006.04.041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.