A kinematically coupled time-splitting scheme for fluid-structure interaction in blood flow. (English) Zbl 1162.74012

Summary: We present a new time-splitting scheme for the numerical simulation of fluid-structure interaction between blood flow and vascular walls. This scheme deals in a successful way with the problem of the added mass effect. The scheme is modular and it embodies the stability properties of implicit schemes at the low computational cost of loosely coupled ones.


74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L15 Biomechanical solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
76Z05 Physiological flows
92C10 Biomechanics
Full Text: DOI


[1] Causin, P.; Gerbeau, J.F.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid – structure problems, Comput. methods appl. mech. engrg., 194, 4506-4527, (2005) · Zbl 1101.74027
[2] Farhat, C.; Lesoinne, M.; Tallec, P.L., Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. methods appl. mech. engrg., 157, 95-114, (1998) · Zbl 0951.74015
[3] Farhat, C.; van der Zee, G.; Geuzaine, P., Provably second-order time-accurate loosely coupled solution algorithms for transient nonlinear computational aeroelasticity, Comput. methods appl. mech. engrg., 195, 1973-2001, (2006) · Zbl 1178.76259
[4] Piperno, S.; Farhat, C., Partitioned procedures for the transient solution of coupled aeroelastic problems – part II: energy transfer analysis and three dimensional applications, Comput. methods appl. mech. engrg., 190, 3147-3170, (2001) · Zbl 1015.74009
[5] Quarteroni, A.; Tuveri, M.; Veneziani, A., Computational vascular fluid dynamics: problems, models and methods, Comput. vis. sci., 2, 163-197, (2000) · Zbl 1096.76042
[6] Zhao, S.Z.; Xu, X.Y.; Collins, M.W., The numerical analysis of fluid – solid interactions for blood flow in arterial structures part 2: development of coupled fluid – solid algorithms, Proc. instn. mech. eng. part H, 212, 241-252, (1998)
[7] Deparis, S.; Fernandez, M.A.; Formaggia, L., Acceleration of a fixed point algorithm for a fluid – structure interaction using transpiration condition, Math. modelling numer. anal., 37, 4, 601-616, (2003) · Zbl 1118.74315
[8] Gerbeau, J.F.; Vidrascu, M., A quasi-Newton algorithm based on a reduced model for fluid – structure interactions problems in blood flows, Math. model. numer. anal., 37, 4, 631-648, (2003) · Zbl 1070.74047
[9] Figueroa, C.A.; Vignon-Clementel, I.E.; Jansen, K.E.; Hughes, T.J.R.; Taylor, C.A., A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Comput. methods appl. mech. engrg., 195, 5685-5706, (2006) · Zbl 1126.76029
[10] Fernández, M.A.; Gerbeau, J.-F.; Grandmont, C., A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, Internat. J. numer. methods engrg., 69, 4, 794-821, (2007) · Zbl 1194.74393
[11] Quaini, A.; Quarteroni, A., A semi-implicit approach for fluid – structure interaction based on an algebraic fractional step method, Math. models methods appl. sci., 17, 6, 957-983, (2007) · Zbl 1388.74041
[12] Nobile, F.; Vergara, C., An effective fluid – structure interaction formulation for vascular dynamics by generalized Robin conditions, SIAM J. sci. comput., 30, 2, 731-763, (2008) · Zbl 1168.74038
[13] E. Burman, M.A. Fernández, Stabilization of explicit coupling in fluid – structure interaction involving fluid incompressibility. Technical Report RR-6445, INRIA, February 2008
[14] Glowinski, R.; Dean, E.J.; Guidoboni, G.; Juarez, L.H.; Pan, T.-W., Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic monge – ampére equation, Japan J. indust. appl. math., 25, 1-63, (2008) · Zbl 1141.76043
[15] Formaggia, L.; Gerbeau, J.F.; Nobile, F.; Quarteroni, A., On the coupling of 3D and 1D navier – stokes equations for flow problems in compliant vessels, Comput. methods appl. mech. engrg., 191, 6-7, 561-582, (2001) · Zbl 1007.74035
[16] Canic, S.; Hartley, C.J.; Rosenstrauch, D.; Tambaca, J.; Guidoboni, G.; Mikelic, A., Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics and experimental validation, Ann. biomed. eng., 34, 9, 575-592, (2006)
[17] Canic, S.; Tambaca, J.; Guidoboni, G.; Mikelic, A.; Hartley, C.J.; Rosenstrauch, D., Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics and experimental validation, SIAM J. appl. math., 67, 164-193, (2006)
[18] Mikelic, A.; Guidoboni, G.; Canic, S., Fluid – structure interaction in a pre-stressed tube with thick elastic walls i: the stationary Stokes problem, Netw. heterog. media, 2, 3, 397-423, (2007) · Zbl 1260.35147
[19] Glowinski, R., ()
[20] Glowinski, R.; Guidoboni, G.; Pan, T.-W., Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity, J. comput. phys., 216, 1, 76-91, (2006) · Zbl 1090.76041
[21] Cavallini, Nicola; Caleffi, Valerio; Coscia, Vincenzo, Finite volumes and WENO scheme in one-dimensional vascular system modelling, Comput. math. appl., 56, 2382-2397, (2008) · Zbl 1165.76364
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.