×

zbMATH — the first resource for mathematics

A new wavelet-based thin plate element using B-spline wavelet on the interval. (English) Zbl 1162.74480
Summary: By interacting and synchronizing wavelet theory in mathematics and variational principle in finite element method, a class of wavelet-based plate element is constructed. In the construction of wavelet-based plate element, the element displacement field represented by the coefficients of wavelet expansions in wavelet space is transformed into the physical degree of freedoms in finite element space via the corresponding two-dimensional \(\text C_{1}\) type transformation matrix. Then, based on the associated generalized function of potential energy of thin plate bending and vibration problems, the scaling functions of B-spline wavelet on the interval (BSWI) at different scale are employed directly to form the multi-scale finite element approximation basis so as to construct BSWI plate element via variational principle. BSWI plate element combines the accuracy of B-spline functions approximation and various wavelet-based elements for structural analysis. Some static and dynamic numerical examples are studied to demonstrate the performances of the present element.

MSC:
74S05 Finite element methods applied to problems in solid mechanics
74K20 Plates
65T60 Numerical methods for wavelets
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cohen A (2003). Numerical analysis of wavelet method. Elsevier, Amsterdam · Zbl 1038.65151
[2] Dahmen W (2001). Wavelet methods for PDEs–some recent developments. J Comput Appl Math 128: 133–185 · Zbl 0974.65101 · doi:10.1016/S0377-0427(00)00511-2
[3] Canuto C, Tabacco A and Urban K (1999). The wavelet element method part I: construction and analysis. Appl Comput Harmon A 6: 1–52 · Zbl 0949.42024 · doi:10.1006/acha.1997.0242
[4] Canuto C, Tabacco A and Urban K (2000). wavelet element method part II: realization and additional feature in 2D and 3D. Appl Comput Harmon A 8: 123–165 · Zbl 0951.42016 · doi:10.1006/acha.2000.0282
[5] Li S and Liu WK (1998). Synchronized reproducing kernel interpolant via multiple wavelet expansion. Comput Mech 21: 28–47 · Zbl 0912.76057 · doi:10.1007/s004660050281
[6] Chen XF, Yang SJ and He ZJ et al (2004). The construction of wavelet finite element and its application. Finite Elem Anal Des 40: 541–554 · doi:10.1016/S0168-874X(03)00077-5
[7] Chen WH and Wu CW (1996). Extension of spline wavelets element method to membrane vibration analysis. Comput Mech 18: 46–54 · Zbl 0864.73077 · doi:10.1007/BF00384175
[8] Han JG, Ren WX and Huang Y (2005). A multivariable wavelet-based finite element method and its application to thick plates. Finite Elem Anal Des 41: 821–833 · doi:10.1016/j.finel.2004.11.001
[9] Han JG, Ren WX and Huang Y (2006). A spline wavelet finite element method in structural mechanics. Int J Num Meth Eng 66: 166–190 · Zbl 1110.74851 · doi:10.1002/nme.1551
[10] Xiang JW, Chen XF, He ZJ, Dong HB (2006) The construction of 1D wavelet finite elements for structural analysis. Comput Mech doi:10.1007/s00466-006-0102-5:1-15
[11] Xiang JW, Chen XF, He YM and He ZJ (2006). The Construction of plane elastomechanics and Mindlin plate elements of B-spline wavelet on the interval. Finite Elem Anal Des 42: 1269–1280 · doi:10.1016/j.finel.2006.06.006
[12] Xiang JW, He ZJ and Chen XF (2006). The construction of wavelet-based truncated conical shell element using B-spline wavelet on the interval. Acta Mech Solida Sin 19(4): 316–326
[13] Xiang JW, Chen XF, He YM and He ZJ (2007). Static and vibration analysis of thin plates by using finite element method of B-spline wavelet on the interval. Struct Eng Mech 25(5): 613–629
[14] Amaratunga K and Sudarshan R (2006). Multiresolution modeling with operator-customized wavelets derived from finite elements. Comput Meth Appl Mech Eng 195: 2509–2532 · Zbl 1125.74051 · doi:10.1016/j.cma.2005.05.012
[15] Sudarshan R, Amaratunga K and Gratsch T (2006). A combined approach for goal-oriented error estimation and adaptivity using operator-customized finite element wavelets. Int J Num Meth Eng 66: 1002–1035 · Zbl 1110.74857 · doi:10.1002/nme.1578
[16] Bertoluzza S, Naldi G and Ravel JC (1994). Wavelet methods for the numerical solution of boundary value problems on the interval. In: Chui, CK, Montefusco, L, and Puccio, L (eds) Wavelets: theory, algorithms, and applications, pp 425–448. Academic, London · Zbl 0845.65040
[17] Chui CK and Quak E (1992). Wavelets on a bounded interval. Numer Math Approx Theory 1: 53–57 · Zbl 0815.42016
[18] Quak E and Weyrich N (1994). Decomposition and reconstruction algorithms for spline wavelets on a Bounded interval. Appl Comput Harmon A 1: 217–231 · Zbl 0804.65143 · doi:10.1006/acha.1994.1009
[19] Goswami JC, Chan AK and Chui CK (1995). On solving first-kind integral equations using wavelets on a bounded interval. IEEE T Antenn Propag 43: 614–622 · Zbl 0944.65537 · doi:10.1109/8.387178
[20] Mallat SG (1999). A wavelet tour of signal processing. Academic, London · Zbl 0998.94510
[21] Wang XC (2002). The finite element methods. Tsing Hua University Press, Beijing (in Chinese)
[22] Morley LSD (1963). Skew plates and structures. Pergamon, Oxford · Zbl 0124.17704
[23] Zienkiewicz OC and Lefebvre D (1988). A robust triangular plate bending element of the Reissner–Mindlin type. Int J Num Meth Eng 26: 1169–1184 · Zbl 0634.73064 · doi:10.1002/nme.1620260511
[24] Hinton E and Huang HC (1986). A family of quadrilateral Mindlin plate elements with substitute shear strain fields. Comput Struct 23: 409–431 · doi:10.1016/0045-7949(86)90232-4
[25] Zienkiewicz OC, Taylor RL and Too JM (1971). Reduced integration technique in general analysis of plates and shells. Int J Num Meth Eng 3: 275–290 · Zbl 0253.73048 · doi:10.1002/nme.1620030211
[26] Malkus DS and Hughes JR (1978). Mixed finite element methods reduced and selective integration techniques: a unification of concepts. Comput Meth Appl Mech Eng 15: 63–81 · Zbl 0381.73075 · doi:10.1016/0045-7825(78)90005-1
[27] Batoz JL and Tahar MB (1982). Evaluation of a new quadrilateral thin plate bending element. Int J Num Meth Eng 18: 1655–1677 · Zbl 0489.73080 · doi:10.1002/nme.1620181106
[28] Brezzi F, Bathe KJ and Fortin M (1989). Mixed interpolated element based on Mindlin/Reissner plate theory and mixed interpolation. Int J Num Meth Eng 28: 1787–1801 · Zbl 0705.73238 · doi:10.1002/nme.1620280806
[29] Chen WJ and Chueng YK (2000). Refined quadrilateral element based on Reissner/Mindlin plate theory. Int J Num Meth Eng 47: 605–627 · Zbl 0970.74072 · doi:10.1002/(SICI)1097-0207(20000310)47:7<1303::AID-NME826>3.0.CO;2-5
[30] Raju KK and Hinton E (1980). Natural frequencies and modes of rhombic Mindlin plates. Earthq En Struct Dyn 8: 55–62 · doi:10.1002/eqe.4290080106
[31] Liew KM, Xiang Y, Kittipornchai S and Wang CM (1993). Vibration of thick skew plates based on Mindlin shear deformation plate theory. J Sound Vib 168: 39–69 · Zbl 0925.73419 · doi:10.1006/jsvi.1993.1361
[32] Liu WK, Han WM, Lu HS, Li SF and Cao J (2004). Reproducing kernel element method Part I: theoretical formulation. Comput Meth Appl Mech Eng 193: 933–951 · Zbl 1060.74670 · doi:10.1016/j.cma.2003.12.001
[33] Weissman SL and Taylor RL (1990). Resultant fields for mixed plate bending elements. Comput Meth Appl Mech Eng 79: 321–355 · Zbl 0743.73031 · doi:10.1016/0045-7825(90)90067-V
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.