×

zbMATH — the first resource for mathematics

Heat transfer over an unsteady stretching permeable surface with prescribed wall temperature. (English) Zbl 1162.76017
Summary: We investigate the unsteady laminar boundary layer flow over a continuously stretching permeable surface. The unsteadiness in the flow and in the temperature field is caused by the time-dependence of the stretching velocity and of the surface temperature. We examine the effects of unsteadiness parameter, suction/injection parameter and Prandtl number on heat transfer characteristics.

MSC:
76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M55 Dimensional analysis and similarity applied to problems in fluid mechanics
80A20 Heat and mass transfer, heat flow (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Crane, L.J., Flow past a stretching plate, Z. angew. math. phys., 21, 645-647, (1970)
[2] Gupta, P.S.; Gupta, A.S., Heat and mass transfer on a stretching sheet with suction or blowing, Can. J. chem. eng., 55, 744-746, (1977)
[3] Grubka, L.J.; Bobba, K.M., Heat transfer characteristics of a continuous, stretching surface with variable temperature, ASME J. heat transfer, 107, 248-250, (1985)
[4] Chen, C.-K.; Char, M.-I., Heat transfer of a continuous, stretching surface with suction or blowing, J. math. anal. appl., 135, 568-580, (1988) · Zbl 0652.76062
[5] Ali, M.E., Heat transfer characteristics of a continuous stretching surface, Heat mass transfer, 29, 227-234, (1994)
[6] Char, M.-I., Heat transfer in a hydromagnetic flow over a stretching sheet, Heat mass transfer, 29, 495-500, (1994)
[7] Chen, C.-H., Laminar mixed-convection adjacent to vertical, continuously stretching sheets, Heat mass transfer, 33, 471-476, (1998)
[8] Kelly, D.; Vajravelu, K.; Andrews, L., Analysis of heat and mass transfer of a viscoelastic, electrically conducting fluid past a continuous stretching sheet, Nonlinear anal., 36, 767-784, (1999) · Zbl 0939.76003
[9] Ishak, A.; Nazar, R.; Pop, I., Mixed convection on the stagnation point flow toward a vertical, continuously stretching sheet, ASME J. heat transfer, 129, 1087-1090, (2007)
[10] Ishak, A.; Nazar, R.; Pop, I., Hydromagnetic flow and heat transfer adjacent to a stretching vertical sheet, Heat mass transfer, 44, 921-927, (2008)
[11] Ishak, A.; Nazar, R.; Pop, I., MHD boundary-layer flow due to a moving extensible surface, J. eng. math., 62, 23-33, (2008) · Zbl 1148.76061
[12] Wang, C.Y., Analysis of viscous flow due to a stretching sheet with surface slip and suction, Nonlinear anal. RWA, 10, 375-380, (2009) · Zbl 1154.76330
[13] Hayat, T.; Sajid, M.; Pop, I., Three-dimensional flow over a stretching surface in a viscoelastic fluid, Nonlinear anal. RWA, 9, 1811-1822, (2008) · Zbl 1154.76315
[14] Cortell, R., Effects of viscous dissipation and radiation on the thermal boundary layer over a nonlinearly stretching sheet, Phys. lett. A, 372, 631-636, (2008) · Zbl 1217.76028
[15] Hayat, T.; Abbas, Z.; Javed, T., Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet, Phys. lett. A, 372, 637-647, (2008) · Zbl 1217.76014
[16] Devi, C.D.S.; Takhar, H.S.; Nath, G., Unsteady mixed convection flow in stagnation region adjacent to a vertical surface, Heat mass transfer, 26, 71-79, (1991)
[17] Andersson, H.I.; Aarseth, J.B.; Dandapat, B.S., Heat transfer in a liquid film on an unsteady stretching surface, Int. J. heat mass transfer, 43, 69-74, (2000) · Zbl 1042.76507
[18] Nazar, R.; Amin, N.; Pop, I., Unsteady boundary layer flow due to a stretching surface in a rotating fluid, Mech. res. commun., 31, 121-128, (2004) · Zbl 1053.76017
[19] Ali, A.; Mehmood, A., Homotopy analysis of unsteady boundary layer flow adjacent to permeable stretching surface in a porous medium, Commun. nonlinear sci. numer. simul., 13, 340-349, (2008) · Zbl 1155.35408
[20] Williams, J.C.; Rhyne, T.B., Boundary layer development on a wedge impulsively set into motion, SIAM J. appl. math., 38, 215-224, (1980) · Zbl 0443.76039
[21] Abramowitz, M.; Stegun, I.A., Handbook of mathematical functions, (1965), Dover New York
[22] Cebeci, T.; Bradshaw, P., Physical and computational aspects of convective heat transfer, (1988), Springer New York · Zbl 0702.76003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.