zbMATH — the first resource for mathematics

Wormhole geometry from real feasible matter sources. (English) Zbl 1162.83313
Summary: We provide a prescription of real feasible sources that supply fuel to construct a traversable wormhole. A class of exact solutions for Einstein-Maxwell field equations describing wormhole with an anisotropic matter distribution has been presented. The anisotropy plays a crucial role for the existence of the spacetime comprising wormhole geometry.

83C15 Exact solutions to problems in general relativity and gravitational theory
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
Full Text: DOI
[1] Website: www.slac.stanford.edu/spires/hep
[2] Morris, M., Thorne, K.: Am. J. Phys. 56, 39 (1988)
[3] Visser, M.: Lorentzian Wormholes: From Einstein to Hawking. Am. Inst. of Phys., New York (1995)
[4] Sharma, R., Maharaj, S.: Mon. Not. R. Astron. Soc. 375, 1265–1268 (2007) and references therein, gr-qc/0702046 · doi:10.1111/j.1365-2966.2006.11355.x
[5] Usov, V.: Phys. Rev. D 70, 067301 (2004) · doi:10.1103/PhysRevD.70.067301
[6] Bronnikov, K.A., et al.: Class. Quantum Gravity 20, 3797 (2003) · Zbl 1045.83065 · doi:10.1088/0264-9381/20/16/317
[7] Tiwari, R., et al.: Indian J. Pure Appl. Math. 27, 907 (1996)
[8] Wang, P., et al.: Class. Quantum Gravity 20, 3797 (2005)
[9] Sola, J., et al.: Mod. Phys. Lett. A 21, 479 (2006) · doi:10.1142/S0217732306019554
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.