×

zbMATH — the first resource for mathematics

Group action on \(\mathbb R\times \mathbb Q\) and fine group topologies. (English) Zbl 1163.54011
Under a number of conditions on the base space \(X\), for example T\(_2\) rim-compact and locally connected, the lattice of admissible group topologies on the space \(\mathcal H(X)\) of homeomorphisms, i.e. those topologies for which the evaluation \(\mathcal H(X)\times X\to X\) is continuous, has a least element. A converse, whether non-rim-compact spaces may have this property, is answered by identifying a least element of the lattice of admissible topology on the non-rim-compact space \(\mathbb R\times\mathbb Q\).

MSC:
54C35 Function spaces in general topology
57S05 Topological properties of groups of homeomorphisms or diffeomorphisms
54H99 Connections of general topology with other structures, applications
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Arens, R., Topologies for homeomorphism groups, Amer. J. math., 68, 593-610, (1946) · Zbl 0061.24306
[2] Bessaga, C.; Pelczynski, A., Selected topics in infinite dimensional topology, (1975), PWN-Polish Scientific Publishers Warszawa · Zbl 0304.57001
[3] Birkhoff, G., The topology of transformation sets, Ann. of math., 35, 4, 861-875, (1934) · Zbl 0010.13304
[4] Bowers, P.L., Limitation topologies on function spaces, Trans. amer. math. soc., 314, 1, 421-431, (1989) · Zbl 0688.54008
[5] Comfort, W.W., Topological groups, (), 1143-1263 · Zbl 0604.22002
[6] Di Concilio, A., Topologizing homeomorphism groups of rim-compact spaces, Topology appl., 153, 1867-1885, (2006) · Zbl 1116.54010
[7] Di Concilio, A., Group action on zero-dimensional spaces, Topology appl., 154, 2050-2055, (2007) · Zbl 1118.54011
[8] Dijkstra, J.J.; van Mill, J., Homeomorphism groups of manifolds and Erdös space, Electron. res. announc. amer. math. soc., 10, 29-38, (2004) · Zbl 1078.57033
[9] Dugundji, James, Topology, (1966), Allyn and Bacon, Inc. Boston · Zbl 0144.21501
[10] Engelking, R., General topology, (1977), Polish Scientific Publishers Warsaw
[11] Gartside, P.; Glyn, A., Autohomeomorphism groups, Topology appl., 129, 103-110, (2003) · Zbl 1020.54026
[12] de Groot, J.; Nishiura, T., Inductive compactness as a generalization of semicompactness, Fund. math., 58, 201-218, (1966) · Zbl 0141.39802
[13] Krikorian, N., A note concerning the fine topology on function spaces, Compos. math., 21, 343-348, (1969) · Zbl 0188.19102
[14] McCoy, R.A., Fine topology on function spaces, Int. J. math. math. sci., 9, 3, 417-424, (1986) · Zbl 0614.54014
[15] McCoy, R.A.; Ntantu, I., Topological properties of spaces of continuous functions, Lecture notes in math., vol. 1315, (1988), Springer-Verlag · Zbl 0621.54011
[16] van Mill, J., The infinite-dimensional topology in function spaces, North-holland math. library, vol. 64, (2001), North-Holland Publishing Co. Amsterdam · Zbl 0969.54003
[17] Torunczyk, H., Characterizing Hilbert spaces topology, Fund. math., 111, 248-262, (1981) · Zbl 0468.57015
[18] Willard, S., General topology, (1970), Addison-Wesley Reading, MA · Zbl 0205.26601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.