×

High-order local non-reflecting boundary conditions: a review. (English) Zbl 1163.74356

Summary: A common method for numerically solving wave problems in unbounded domains is based on truncating the infinite domain via an artificial boundary B, thus defining a finite computational domain, and using a special non-reflecting boundary condition (NRBC) on B. Low-order local NRBCs have been constructed and practiced since the 1970s. Exact non-local NRBCs were introduced in the 1980s. Only recently high-order local NRBCs have been devised. These NRBCs, despite being of an arbitrarily high-order, do not involve high derivatives owing to the use of specially defined auxiliary variables. This paper reviews the latter approach, explains its advantages compared to previous approaches, and discusses the different schemes which have been proposed in this context.

MSC:

74-XX Mechanics of deformable solids
76-XX Fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] D. Givoli, Numerical Methods for Problems in Infinite Domains, Elsevier, Amsterdam, 1992. · Zbl 0788.76001
[2] Givoli, D., Non-reflecting boundary conditions: a review, J. comput. phys., 94, 1-29, (1991) · Zbl 0731.65109
[3] J. Astley, K. Gerdes, D. Givoli, I. Harari (Eds.), Special issue on finite elements for wave propagation, J. Comput. Acoust. 8 (1) (2000).
[4] D. Givoli, I. Harari (Eds.), Special issue on exterior problems of wave propagation, Comput. Math. Appl. Mech. Eng. 164 (1-2) (1998). · Zbl 0943.00033
[5] E. Turkel (Ed.), Special issue on absorbing boundary conditions, Appl. Num. Math. 27 (4) (1998). · Zbl 0928.00012
[6] Givoli, D., Exact representations on artificial interfaces and applications in mechanics, Appl. mech. rev., 52, 333-349, (1999)
[7] Givoli, D., Recent advances in the dtn finite element method for unbounded domains, Arch. comput. meth. eng., 6, 71-116, (1999)
[8] Hagstrom, T., Radiation boundary conditions for the numerical simulation of waves, Acta numer., 8, 47-106, (1999) · Zbl 0940.65108
[9] Tsynkov, S.V., Numerical solution of problems on unbounded domains: a review, Appl. numer. math., 27, 465-532, (1998) · Zbl 0939.76077
[10] Engquist, B.; Majda, A., Radiation boundary conditions for acoustic and elastic calculations, Commun. pure appl. math., 32, 313-357, (1979) · Zbl 0387.76070
[11] Bayliss, A.; Turkel, E., Radiation boundary conditions for wave-like equations, Commun. pure appl. math., 33, 707-725, (1980) · Zbl 0438.35043
[12] Keller, J.B.; Givoli, D., Exact non-reflecting boundary conditions, J. comput. phys., 82, 172-192, (1989) · Zbl 0671.65094
[13] Givoli, D.; Keller, J.B., Non-reflecting boundary conditions for elastic waves, Wave motion, 12, 261-279, (1990) · Zbl 0708.73012
[14] Ryaben’kii, V.S.; Tsynkov, S.V., Artificial boundary conditions for the numerical solution of external viscous flow problems, SIAM J. numer. anal., 32, 1355-1389, (1995) · Zbl 0835.76078
[15] Tsynkov, S.V.; Turkel, E.; Abarbanel, S., External flow computations using global boundary conditions, Aiaa j., 34, 700-706, (1996)
[16] Bérenger, J.P., A perfectly matched layer for the absorption of electromagnetic waves, J. comput. phys., 114, 185-200, (1994) · Zbl 0814.65129
[17] F.J. Rizzo, The boundary element method—some early history: a personal view, in: D.E. Beskos (Ed.), Boundary Elements in Structural Analysis, ASCE, New York, 1989, pp. 1-16.
[18] Burnett, D.S., A three-dimensional acoustic infinite element based on a prolate spheroidal multiple expansion, J. acoust. soc. am., 96, 2798-2816, (1994)
[19] Astley, R.J., Transient wave envelope elements for wave problems, J. sound vib., 192, 245-261, (1996)
[20] F. Collino, High order absorbing boundary conditions for wave propagation models. Straight line boundary and corner cases, in: R. Kleinman, et al. (Eds.), Proceedings of the Second International Conference on Mathematical and Numerical Aspects of Wave Propagation, SIAM, Delaware, 1993, pp. 161-171. · Zbl 0814.35065
[21] Grote, M.J.; Keller, J.B., Exact nonreflecting boundary conditions for the time dependent wave equation, SIAM J. appl. math., 55, 280-297, (1995) · Zbl 0817.35049
[22] Grote, M.J.; Keller, J.B., Nonreflecting boundary conditions for time dependent scattering, J. comput. phys., 127, 52-65, (1996) · Zbl 0860.65080
[23] Grote, M.J.; Keller, J.B., Exact nonreflecting boundary condition for elastic waves, SIAM J. appl. math., 60, 803-819, (2000) · Zbl 0977.35075
[24] Grote, M.J.; Keller, J.B., Nonreflecting boundary conditions for maxwell’s equations, J. comput. phys., 139, 327-342, (1998) · Zbl 0908.65118
[25] Grote, M.J., Nonreflecting boundary conditions for elastodynamic scattering, J. comput. phys., 161, 331-353, (2000) · Zbl 0972.74076
[26] Grote, M.J., Non-reflecting boundary conditions for electromagnetic scattering, Int. J. numer. model. el., 13, 397-416, (2000) · Zbl 1090.78514
[27] T. Hagstrom, S.I. Hariharan, Progressive wave expansions and open boundary problems, in: B. Engquist, G.A. Kriegsmann (Eds.), Computational Wave Propagation, IMA Volumes in Mathematics and its Applications, vol. 86, Springer, New York, 1997, pp. 23-43. · Zbl 0862.65057
[28] Hagstrom, T.; Hariharan, S.I., A formulation of asymptotic and exact boundary conditions using local operators, Appl. numer. math., 27, 403-416, (1998) · Zbl 0924.35167
[29] Guddati, M.N.; Tassoulas, J.L., Continued-fraction absorbing boundary conditions for the wave equation, J. comput. acoust., 8, 139-156, (2000) · Zbl 1360.76136
[30] Rowley, C.W.; Colonius, T., Discretely nonreflecting boundary conditions for linear hyperbolic systems, J. comput. phys., 157, 500-538, (2000) · Zbl 0962.76066
[31] Givoli, D., High-order non-reflecting boundary conditions without high-order derivatives, J. comput. phys., 170, 849-870, (2001) · Zbl 0984.65115
[32] Givoli, D.; Patlashenko, I., An optimal high-order non-reflecting finite element scheme for wave scattering problems, Int. J. numer. meth. eng., 53, 2389-2411, (2002) · Zbl 1007.65093
[33] Givoli, D.; Neta, B., High-order non-reflecting boundary scheme for time-dependent waves, J. comput. phys., 186, 24-46, (2003) · Zbl 1025.65049
[34] van Joolen, V.; Givoli, D.; Neta, B., High-order non-reflecting boundary conditions for dispersive waves in Cartesian, cylindrical and spherical coordinate systems, Int. J. comput. fluid dyn., 17, 263-274, (2003) · Zbl 1043.76524
[35] D. Givoli, B. Neta, I. Patlashenko, Finite element solution of exterior time-dependent wave problems with high-order boundary treatment, J. Numer. Meth. Eng. 58 (2003) 1955-1983. · Zbl 1034.78014
[36] V. van Joolen, B. Neta, D. Givoli, High-order Higdon-like boundary conditions for exterior transient wave problems, SIAM J. Sci. Comput., in press. · Zbl 1088.65081
[37] Sofronov, I.L., Conditions for complete transparency on the sphere for the three-dimensional wave equation, Russ. acad. dci. dokl. math., 46, 397-401, (1993) · Zbl 0799.35141
[38] Thompson, L.L.; Huan, R.N., Finite element formulation of exact non-reflecting boundary conditions for the time-dependent wave equation, Int. J. numer. meth. eng., 45, 1607-1630, (1999) · Zbl 0981.76058
[39] Thompson, L.L.; Huan, R.N., Implementation of exact non-reflecting boundary conditions in the finite element method for the time-dependent wave equation, Comput. math. appl. mech. eng., 187, 137-159, (2000) · Zbl 0955.65071
[40] Huan, R.N.; Thompson, L.L., Accurate radiation boundary conditions for the time-dependent wave equation on unbounded domains, Int. J. numer. meth. eng., 47, 1569-1603, (2000) · Zbl 0965.65120
[41] Thompson, L.L.; Huan, R.N.; He, D.T., Accurate radiation boundary conditions for the two-dimensional wave equation on unbounded domains, Comput. math. appl. mech. eng., 191, 311-351, (2001) · Zbl 0998.65106
[42] Ting, L.; Miksis, M.J., Exact boundary conditions for scattering problems, J. acoust. soc. am., 80, 1825-1827, (1986)
[43] Givoli, D.; Cohen, D., Non-reflecting boundary conditions based on Kirchhoff-type formulae, J. comput. phys., 117, 102-113, (1995) · Zbl 0861.65071
[44] Givoli, D.; Neta, B., High-order non-reflecting boundary conditions for dispersive waves, Wave motion, 37, 257-271, (2003) · Zbl 1163.74357
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.