×

Equations in finite fields with restricted solution sets. I: Character sums. (English) Zbl 1164.11074

Let \(p\) be a prime number, \(r\) a positive integer, and \(\mathbb F_q\) a finite field with \(q=p^r\) elements. K. Gyarmati [Acta Arith. 97, 53–65 (2001; Zbl 0986.11016)] showed that if \(h(x)\in \mathbb F_{p}[x]\) and \(A,B\) are subsets of \(\mathbb F_p\) such that \(| A| | B| >cp\), where \(c\) is a positive constant depending on the degree of \(h(x)\), then there exist elements \(a\in A, b\in B\) and \(x\in \mathbb F_p\) with \(a+b=h(x)\) (resp. \(ab=h(x)\)). Later, A. Sárközy [Acta Arith. 118, 403–409 (2005; Zbl 1078.11011)] proved that if \(A,B,C,D\in \mathbb F_p\) are subsets of \(\mathbb F_p\) such that \(| A| | B| | C| | D| >p^3\) (resp. \(| A| | B| | C| | D| >100p^3\)) then there exist \(a\in A\), \(b\in B\), \(c\in C\), \(d\in D\) with \(a+b=cd\) (resp. \(ab+1=cd\)).
In a series of papers the authors intend to study equations of the above type over an arbitrary finite field \(\mathbb F_q\). In this paper (which presents Part I of the series) the authors give the necessary character sum estimates which generalize several estimates obtained earlier in the case of prime finite field \(\mathbb F_p\) by I. M. Vinogradov [Tr. Mat. Inst. Steklova 23, 110 pp. (1947; Zbl 0041.37002)], P. Erdős and H. N. Shapiro [Pac. J. Math. 7, 861–865 (1957; Zbl 0079.06304)], J. Friedlander and H. Iwaniec [Proc. Am. Math. Soc. 119, 365–372 (1993; Zbl 0782.11022)].
For Part II, see Acta Math. Hung. 119, No. 3, 259–280 (2008; Zbl 1199.11141).

MSC:

11T24 Other character sums and Gauss sums
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P. Erdos and A. Sárközy, On differences and sums of integers, I, J. Number Theory, 10 (1978), 430–450. · Zbl 0404.10029
[2] P. Erdos and N. H. Shapiro, On the least primitive root of a prime, Pacific J. Math., 7 (1957), 861–865. · Zbl 0079.06304
[3] J. Friedlander and H. Iwaniec, Estimates for character sums, Proc. Amer. Math. Soc., 119 (1993), 365–372. · Zbl 0782.11022
[4] K. Gyarmati, On a problem of Diophantus, Acta Arith., 97 (2001), 53–65. · Zbl 0986.11016
[5] R. Lidl and H. Niederreiter, Finite Fields, 2nd ed., Cambridge Univ. Press (1997). · Zbl 1139.11053
[6] A. Sárközy, On sums and products of residues modulo p, Acta Arith., 118 (2005), 403–409. · Zbl 1078.11011
[7] A. Sárközy, On products and shifted products of residues modulo p, volume dedicated to the sixtieth birthday of M. B. Nathanson, Springer, to appear.
[8] W. M. Schmidt, Equations over Finite Fields: An Elementary Approach, Lecture Notes in Math. 536, Springer (New York, 1976). · Zbl 0329.12001
[9] I. M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers, Interscience, London, 1954 (translated from Russian, the Russian original appeared in 1947). · Zbl 0055.27504
[10] I. M. Vinogradov, Elements of Number Theory (Dover, 1954). · Zbl 0057.28201
[11] A. Weil, Sur les courbes algébriques et les variétés qui s’en déduisent, Publ. Inst. Math. Univ. Strasbourg, 7 (1945), Hermann (Paris, 1948).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.