Periodic solutions for damped differential equations with a weak repulsive singularity. (English) Zbl 1165.34349

Summary: This paper deals with the existence of positive \(T\)-periodic solutions for the damped differential equation
\[ \ddot x +p(t)\dot x+q(t)x = f(t,x)+c(t) \]
where \(p, q, c \in L^1(\mathbb R)\) are \(T\)-periodic functions and \(f \in Car(\mathbb R\times \mathbb R^+, \mathbb R)\) is \(T\)-periodic in the first variable. We will prove that a weak repulsive singularity enables the achievement of new existence criteria through a basic application of Schauder’s fixed point theorem.


34C25 Periodic solutions to ordinary differential equations
47N20 Applications of operator theory to differential and integral equations
Full Text: DOI


[1] Bonheure, D.; De Coster, C., Forced singular oscillators and the method of upper and lower solutions, Topol. methods nonlinear anal., 22, 297-317, (2003) · Zbl 1108.34033
[2] Chu, J.; Torres, P.J.; Zhang, M., Periodic solutions of second order non-autonomous singular dynamical systems, J. differential equations, 239, 196-212, (2007) · Zbl 1127.34023
[3] Chu, J.; Torres, P.J., Applications of schauder’s fixed point theorem to singular differential equations, Bull. London math. soc., 39, 653-660, (2007) · Zbl 1128.34027
[4] De Coster, C.; Habets, P., Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results, (), 1-78 · Zbl 0889.34018
[5] Forbat, F.; Huaux, A., Détermination approché et stabilité locale de la solution périodique d’une équation différentielle non liné, Mém. public. soc. sciences, artts lettres du hainaut, 76, 3-13, (1962) · Zbl 0107.07203
[6] Fonda, A.; Manásevich, R.; Zanolin, F., Subharmonics solutions for some second order differential equations with singularities, SIAM J. math. anal., 24, 1294-1311, (1993) · Zbl 0787.34035
[7] Habets, P.; Sanchez, L., Periodic solutions of some Liénard equations with singularities, Proc. amer. math. soc., 109, 1135-1144, (1990)
[8] Habets, P.; Sanchez, L., Periodic solutions of dissipative dynamical systems with singular potentials, Differential integral equations, 3, 1139-1149, (1990) · Zbl 0724.34049
[9] Huaux, A., Sur L’existence d’une solution périodique de l’équation différentielle non linéaire \(\ddot{x} + 0, 2 \dot{x} + \frac{x}{1 - x} = (0, 5) \cos \omega t\), Bull. cl. sci. acad. R. belguique, 48, 494-504, (1962) · Zbl 0112.06105
[10] Jebelean, P.; Mawhin, J., Periodic solutions of forced dissipative \(p\)-Liénard equations with singularities, Vietnam J. math., 32, 97-103, (2004) · Zbl 1098.34031
[11] Jiang, D.; Chu, J.; Zhang, M., Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. differential equations, 211, 282-302, (2005) · Zbl 1074.34048
[12] Lazer, A.C.; Solimini, S., On periodic solutions of nonlinear differential equations with singularities, Proc. amer. math. soc., 99, 109-114, (1987) · Zbl 0616.34033
[13] X. Li, Z. Zhang, Periodic solutions for some second order differential equations with singularity, Z. Angew. Math. Phys. (in press) · Zbl 1157.34034
[14] Liu, B., Periodic solutions of dissipative dynamical systems with singular potential and \(p\)-Laplacian, Ann. polon. math., 79, 109-120, (2002) · Zbl 1024.34037
[15] Manásevich, R.; Mawhin, J., Periodic solutions for nonlinear systems with \(p\)-Laplacian-like operators, J. differential equations, 145, 367-393, (1998) · Zbl 0910.34051
[16] Mawhin, J., Topological degree and boundary value problems for nonlinear differential equations, (), 74-142 · Zbl 0798.34025
[17] del Pino, M.; Manásevich, R., Infinitely many \(T\)-periodic solutions for a problem arising in nonlinear elasticity, J. differential equations, 103, 260-277, (1993) · Zbl 0781.34032
[18] Rachunková, I.; Stanek, S.; Tvrdý, M., Singularities and Laplacians in boundary value problems for nonlinear ordinary differential equations, ()
[19] Torres, P.J., Weak singularities may help periodic solutions to exist, J. differential equations, 232, 277-284, (2007) · Zbl 1116.34036
[20] Wang, Y.; Lian, H.; Ge, W., Periodic solutions for a second order nonlinear functional differential equation, Appl. math. lett., 20, 110-115, (2007) · Zbl 1151.34056
[21] Zhang, M., Periodic solutions of Liénard equations with singular forces of repulsive type, J. math. anal. appl., 203, 254-269, (1996) · Zbl 0863.34039
[22] Zhang, M., Periodic solutions of damped differential systems with repulsive singular forces, Proc. amer. math. soc., 127, 401-407, (1999) · Zbl 0908.34024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.