zbMATH — the first resource for mathematics

Connections between the covector mapping theorem and convergence of pseudospectral methods for optimal control. (English) Zbl 1165.49034
Summary: In recent years, many practical nonlinear optimal control problems have been solved by PseudoSpectral (PS) methods. In particular, the Legendre PS method offers a covector mapping theorem that blurs the distinction between traditional direct and indirect methods for optimal control. In an effort to better understand the PS approach for solving control problems, we present consistency results for nonlinear optimal control problems with mixed state and control constraints. A set of sufficient conditions is proved under which a solution of the discretized optimal control problem converges to the continuous solution. Convergence of the primal variables does not necessarily imply the convergence of the duals. This leads to a clarification of the covector mapping theorem in its relationship to the convergence properties of PS methods and its connections to constraint qualifications. Conditions for the convergence of the duals are described and illustrated. An application of the ideas to the optimal attitude control of NPSAT1, a highly nonlinear spacecraft, shows that the method performs well for real-world problems.

49M30 Other numerical methods in calculus of variations (MSC2010)
49N15 Duality theory (optimization)
Full Text: DOI
[1] Albassam, B.A.: Optimal near-minimum-time control design for flexible structures. J. Guid. Control Dyn. 25(4), 618–625 (2002) · doi:10.2514/2.4945
[2] Betts, J.T., Erb, S.O.: Optimal low thrust trajectories to the Moon. SIAM J. Appl. Dyn. Syst. 2(2), 144–170 (2003) · Zbl 1088.49500 · doi:10.1137/S1111111102409080
[3] Betts, J.T.: Practical Methods for Optimal Control Using Nonlinear Programming. SIAM, Philadelphia (2001) · Zbl 0995.49017
[4] Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover, New York (2001) · Zbl 0994.65128
[5] Bryson, A.E.: Dynamic Optimization. Addison-Wesley Longman, Reading (1999)
[6] Bryson, A.E., Ho, Y.C.: Applied Optimal Control. Hemisphere, New York (1975)
[7] Canuto, C., Hussaini, M.Y., Quarteroni, A., Zang, T.A.: Spectral Method in Fluid Dynamics. Springer, New York (1988) · Zbl 0658.76001
[8] Chryssoverghi, I., Coletsos, J., Kokkinis, B.: Discretization methods for optimal control problems with state constraints. J. Comput. Appl. Math. 191, 1–31 (2006) · Zbl 1095.65055 · doi:10.1016/j.cam.2005.04.020
[9] Dontchev, A.L.: Discrete approximations in optimal control. In: Nonsmooth Analysis and Geometric Methods in Deterministic Optimal Control. IMA Vol. Math. Appl., vol. 78, pp. 59–81. Springer, New York (1996). MR 97h:49043
[10] Dontchev, A.L., Hager, W.W.: A new approach to Lipschitz continuity in state constrained optimal control. Syst. Control Lett. 35(3), 137–143 (1998) · Zbl 0988.49017 · doi:10.1016/S0167-6911(98)00043-7
[11] Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math. Comput. 70, 173–203 (2001) · Zbl 0987.49017
[12] Dontchev, A.L., Hager, W.W., Veliov, V.M.: Second-order Runge-Kutta approximations in control constrained optimal control. SIAM J. Numer. Anal. 38(1), 202–226 (2000) · Zbl 0968.49022 · doi:10.1137/S0036142999351765
[13] Elnagar, G., Kazemi, M.A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Autom. Control 40, 1793–1796 (1995) · Zbl 0863.49016 · doi:10.1109/9.467672
[14] Elnagar, G., Kazemi, M.A.: Pseudospectral Chebyshev optimal control of constrained nonlinear dynamical systems. Comput. Optim. Appl. 11, 195–217 (1998) · Zbl 0914.93024 · doi:10.1023/A:1018694111831
[15] Enright, P.G., Conway, B.A.: Discrete approximations to optimal trajectories using direct transcription and nonlinear programming. J. Guid. Control Dyn. 15(4), 994–1002 (1992) · Zbl 0776.49015 · doi:10.2514/3.20934
[16] Fahroo, F., Ross, I.M.: Costate estimation by a Legendre pseudospectral method. AIAA J. Guid. Control Dyn. 24(2), 270–277 (2001) · doi:10.2514/2.4709
[17] Fleming, A.: Real-time optimal slew maneuver design and control. Astronautical Engineer’s Thesis, US Naval Postgraduate School, December 2004
[18] Freud, G.: Orthogonal polynomials. Pergamon Press, Elmsford (1971) · Zbl 0226.33014
[19] Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM J. Optim. 12(4), 979–1006 (2002) · Zbl 1027.90111 · doi:10.1137/S1052623499350013
[20] Gong, Q., Kang, W., Ross, I.M.: A pseudospectral method for the optimal control of constrained feedback linearizable systems. IEEE Trans. Autom. Control 51(7), 1115–1129 (2006) · Zbl 1366.49035 · doi:10.1109/TAC.2006.878570
[21] Hager, W.W.: Runge-Kutta methods in optimal control and the transformed adjoint system. Numer. Math. 87, 247–282 (2000) · Zbl 0991.49020 · doi:10.1007/s002110000178
[22] Hager, W.W.: Numerical analysis in optimal control. In: Hoffmann, K.-H., Lasiecka, I., Leugering, G., Sprekels, J., Troeltzsch, F. (eds.) International Series of Numererical Mathematics, vol. 139, pp. 83–93. Birkhäuser, Basel (2001)
[23] Hargraves, C.R., Paris, S.W.: Direct trajectory optimization using nonlinear programming and collocation. J. Guid. Control Dyn. 10, 338–342 (1987) · Zbl 0634.65052 · doi:10.2514/3.20223
[24] Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37(2), 181–218 (1995) · Zbl 0832.49013 · doi:10.1137/1037043
[25] Hawkins, A.M., Fill, T.R., Proulx, R.J., Feron, E.M.: Constrained trajectory optimization for Lunar landing. In: AAS Spaceflight Mechanics Meeting, AAS 06-153, Tampa, FL, January 2006
[26] Infeld, S.I., Murray, W.: Optimization of stationkeeping for a Libration point mission. In: AAS Spaceflight Mechanics Meeting, AAS 04-150, Maui, HI, February 2004
[27] Josselyn, S., Ross, I.M.: A rapid verification method for the trajectory optimization of Reentry vehicles. J. Guid. Control Dyn. 26(3), 505–508 (2003) · doi:10.2514/2.5074
[28] Kang, W., Gong, Q., Ross, I.M.: Convergence of pseudospectral methods for nonlinear optimal control problems with discontinuous controller. In: 44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC’05), Seville, Spain, pp. 2799–2804 (2005)
[29] Lu, P., Sun, H., Tsai, B.: Closed-loop endoatmospheric ascent guidance. J. Guid. Control Dyn. 26(2), 283–294 (2003) · doi:10.2514/2.5045
[30] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic Theory. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) Series, vol. 330. Springer, Berlin (2005) · Zbl 1100.49002
[31] Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation II: Applications. Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences) Series, vol. 331. Springer, Berlin (2005) · Zbl 1100.49002
[32] Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999) · Zbl 0930.65067
[33] Paris, S.W., Hargraves, C.R.: OTIS 3.0 Manual. Boeing Space and Defense Group, Seattle (1996)
[34] Pesch, H.J.: A practical guide to the solution of real-life optimal control problems. Control Cybern. 23, 7–60 (1994) · Zbl 0811.49029
[35] Polak, E.: A historical survey of computational methods in optimal control. SIAM Rev. 15, 553–548 (1973) · Zbl 0274.49001 · doi:10.1137/1015071
[36] Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, Heidelberg (1997) · Zbl 0899.90148
[37] Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Wiley, New York (1962)
[38] Rea, J.: Launch vehicle trajectory optimization using a Legendre pseudospectral method. In: Proceedings of the AIAA Guidance, Navigation and Control Conference, Paper No. AIAA 2003-5640, Austin, TX, August 2003
[39] Riehl, J.P., Paris, S.W., Sjauw, W.K.: Comparision of implicit integration methods for solving aerospace trajectory optimization problems. In: Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper No. 2006-6033, Keystone, CO, 21–24 August 2006
[40] Ross, I.M.: A historical introduction to the covector mapping principle. In: AAS/AIAA Astrodynamics Specialist Conference, Paper AAS 05-332, Tahoe, NV, 8–11 August 2005
[41] Ross, I.M.: A roadmap for optimal control: The right way to commute. In: Annals of the New York Academy of Sciences, vol. 1065. New York, NY, January 2006
[42] Ross, I.M.: User’s manual for DIDO: A MATLAB application package for solving optimal control problems. Elissar LLC., Technical Report TR-705 (2007)
[43] Ross, I.M., Fahroo, F.: A pseudospectral transformation of the covectors of optimal control systems. In: Proceedings of the First IFAC Symposium on System Structure and Control, Prague, Czech Republic, 29–31 August 2001
[44] Ross, I.M., D’Souza, C.N.: Hybrid optimal control framework for mission planning. J. Guid. Control Dyn. 28(4), 686–697 (2005) · doi:10.2514/1.8285
[45] Ross, I.M., Fahroo, F.: Discrete verification of necessary conditions for switched nonlinear optimal control systems. In: Proceedings of the American Control Conference, Boston, MA, June 2004 · Zbl 1365.93160
[46] Ross, I.M., Fahroo, F.: Pseudospectral knotting methods for solving optimal control problems. AIAA J. Guid. Control Dyn. 27(3), 397–405 (2004) · doi:10.2514/1.3426
[47] Ross, I.M., Fahroo, F.: Pseudospectral methods for optimal motion planning of differentially flat systems. IEEE Trans. Autom. Control 49(8), 1410–1413 (2004) · Zbl 1365.93160 · doi:10.1109/TAC.2004.832972
[48] Ross, I.M., Fahroo, F.: Legendre pseudospectral approximations of optimal control problems. In: Kang, W. et al. (eds.) Lecture Notes in Control and Information Sciences, vol. 295, pp. 327–342. Springer, New York (2003) · Zbl 1203.49025
[49] Stanton, S., Proulx, R., D’Souza, C.N.: Optimal orbit transfer using a Legendre pseudospectral method. In: AAS/AIAA Astrodynamics Specialist Conference, AAS-03-574, Big Sky, MT, 3–7 August 2003
[50] Strizzi, J., Ross, I.M., Fahroo, F.: Towards real-time computation of optimal controls for nonlinear systems. In: Proc. AIAA GNC Conf., Monterey, CA, August 2002
[51] Trefethen, L.N.: Spectral Methods in MATLAB. SIAM, Philadelphia (2000) · Zbl 0953.68643
[52] Veliov, V.M.: On the time-discretization of control systems. SIAM J. Control Optim. 35(5), 1470–1486 (1997) · Zbl 0885.49024 · doi:10.1137/S0363012995288987
[53] Vinter, R.: Optimal Control,. Birkhäuser, Boston (2000)
[54] von Stryk, O.: Numerical solution of optimal control problems by direct collocation. In: Bulirsch, R. et al. (eds.) Optimal Control: Calculus of Variations, Optimal Control Theory and Numerical Methods. Birkhäuser, Boston (1993) · Zbl 0790.49024
[55] Williams, P., Blanksby, C., Trivailo, P.: Receding horizon control of tether system using quasilinearization and Chebyshev pseudospectral approximations. In: AAS/AIAA Astrodynamics Specialist Conference, Paper AAS 03-535, Big Sky, MT, 3–7 August 2003
[56] Yan, H., Alfriend, K.T.: Three-axis magnetic attitude control using pseudospectral control law in eccentric orbits. In: AAS Spaceflight Mechanics Meeting, AAS 06-103, Tampa, FL, January 2006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.