Yao, Yonghong; Noor, Muhammad Aslam; Liou, Yeong-Cheng On iterative methods for equilibrium problems. (English) Zbl 1165.49035 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 1, 497-509 (2009). Summary: We introduce a hybrid iterative scheme for finding a common element of the set of solutions of an equilibrium problem and the set of fixed points of finitely many nonexpansive mappings. We prove that the approximate solution converges strongly to a solution of a class of variational inequalities under some mild conditions, which is the optimality condition for some minimization problem. We also give some comments on the results of S. Plubtieng and R. Punpaeng [J. Math. Anal. Appl. 336, No. 1, 455–469 (2007; Zbl 1127.47053)]. Results obtained in this paper may be viewed as an improvement and refinement of the previously known results in this area. Cited in 26 Documents MSC: 49M37 Numerical methods based on nonlinear programming 47H10 Fixed-point theorems 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces Keywords:equilibrium problem; hybrid iterative scheme; fixed point; nonexpansive mapping Citations:Zbl 1127.47053 PDF BibTeX XML Cite \textit{Y. Yao} et al., Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70, No. 1, 497--509 (2009; Zbl 1165.49035) Full Text: DOI OpenURL References: [1] Combettes, P.L.; Hirstoaga, S.A., Equilibrium problems in Hilbert spaces, J. nonlinear convex anal., 6, 117-136, (2005) · Zbl 1109.90079 [2] Takahashi, S.; Takahashi, W., Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. math. anal. appl., 331, 506-515, (2007) · Zbl 1122.47056 [3] Marino, G.; Xu, H.K., A general iterative method for nonexpansive mappings in Hilbert spaces, J. math. anal. appl., 318, 43-52, (2006) · Zbl 1095.47038 [4] Plubtieng, S.; Punpaeng, R., A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, J. math. anal. appl., 336, 455-469, (2007) · Zbl 1127.47053 [5] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. student, 63, 123-145, (1994) · Zbl 0888.49007 [6] Suzuki, T., Strong convergence of Krasnoselskii and mann’s type sequences for one-parameter nonexpansive semigroups without Bochner integrals, J. math. anal. appl., 305, 227-239, (2005) · Zbl 1068.47085 [7] Atsushiba, S.; Takahashi, W., Strong convergence theorems for a finite family of nonexpansive mappings and applications, Indian J. math., 41, 435-453, (1999) · Zbl 1055.47514 [8] Takahashi, W.; Shimoji, K., Convergence theorems for nonexpansive mappings and feasibility problems, Math. comput. modelling, 32, 1463-1471, (2000) · Zbl 0971.47040 [9] Chadli, O.; Wong, N.C.; Yao, J.C., Equilibrium problems with applications to eigenvalue problems, J. optim. theory appl., 117, 245-266, (2003) · Zbl 1141.49306 [10] Chadli, O.; Schaible, S.; Yao, J.C., Regularized equilibrium problems with an application to noncoercive hemivariational inequalities, J. optim. theory appl., 121, 571-596, (2004) · Zbl 1107.91067 [11] Konnov, I.V.; Schaible, S.; Yao, J.C., Combined relaxation method for mixed equilibrium problems, J. optim. theory appl., 126, 309-322, (2005) · Zbl 1110.49028 [12] Combettes, P.L.; Hirstoaga, S.A., Equilibrium programming in Hilbert spaces, J. nonlinear convex anal., 6, 117-136, (2005) · Zbl 1109.90079 [13] Chadli, O.; Konnov, I.V.; Yao, J.C., Descent methods for equilibrium problems in a Banach space, Comput. math. appl., 48, 609-616, (2004) · Zbl 1057.49009 [14] L.C. Zeng, S.Y. Wu, J.C. Yao, Generalized KKM theorem with applications to generalized minimax inequalities and generalized equilibrium problems, Taiwanese J. Math. 2007 (in press) · Zbl 1121.49005 [15] Ding, X.P.; Lin, Y.C.; Yao, J.C., Predictor – corrector algorithms for solving generalized mixed implicit quasi-equilibrium problems, Appl. math. mech., 27, 1157-1164, (2006) · Zbl 1199.49010 [16] Tada, A.; Takahashi, W., Strong convergence theorem for an equilibrium problem and a nonexpansive mapping, (), 609-617 · Zbl 1122.47055 [17] Noor, M. Aslam; Oettli, W., On general nonlinear complementarity problems and quasi equilibria, Mathematiche (Catania), 49, 313-331, (1994) · Zbl 0839.90124 [18] Noor, M. Aslam; Noor, K. Inayat, On equilibrium problems, Appl. math. E-notes, 4, 125-132, (2004) · Zbl 1064.49009 [19] Noor, M. Aslam, Fundamentals of equilibrium problems, Math. inequal. appl., 9, 529-566, (2006) · Zbl 1099.91072 [20] Noor, M. Aslam, Some classes of equilibrium problems, Nonlinear anal. forum, 12, xxx, (2007) [21] Noor, M. Aslam, Regularized mixed quasi equilibrium problems, J. appl. math. comput., 23, 183-191, (2007) · Zbl 1111.49005 [22] Noor, M. Aslam, Predictor – corrector methods for multivalued hemiequilibrium problems, Appl. math. comput., 181, 721-731, (2006) · Zbl 1148.65307 [23] Noor, M. Aslam, Mixed quasi equilibrium-like problems, J. appl. math. stoch. anal., 2006, 1-12, (2006), Article ID 12736 [24] Noor, M. Aslam, Invex equilibrium problems, J. math. anal. appl., 302, 463-475, (2005) · Zbl 1058.49007 [25] Noor, M. Aslam, Fundamentals of mixed quasi variational inequalities, Int. J. pure appl. math., 15, 137-258, (2004) · Zbl 1059.49018 [26] Noor, M. Aslam; Noor, K. Inayat; Gupta, V., On equilibrium-like problems, Appl. anal., 86, 807-818, (2007) · Zbl 1129.49016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.