×

zbMATH — the first resource for mathematics

Application of he’s homotopy perturbation method for solving the Cauchy reaction-diffusion problem. (English) Zbl 1165.65398
Summary: The solution of Cauchy reaction-diffusion problem is presented by means of the homotopy perturbation method. Reaction-diffusion equations have special importance in engineering and sciences and constitute a good model for many systems in various fields. Application of homotopy perturbation method to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution.

MSC:
65M99 Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
PDF BibTeX Cite
Full Text: DOI
References:
[1] Britton, N.F., Reaction-diffusion equations and their applications to biology, (1998), Academic Press/Harcourt Brace Jovanovich Publishers New York · Zbl 0602.92001
[2] Cantrell, R.S.; Cosner, C., Spatial ecology via reaction-diffusion equations, () · Zbl 1058.92041
[3] Grindrod, P., ()
[4] Smoller, J., ()
[5] Lesnic, D., The decomposition method for Cauchy reaction-diffusion problems, Applied mathematics letters, 20, 412-418, (2007) · Zbl 1169.35304
[6] M. Dehghan, F. Shakeri, Application of He’s variational iteration method for solving the Cauchy reaction-diffusion problem, Journal of Computational and Applied Mathematics, doi:10.1016/j.cam.2007.03.006 · Zbl 1135.65381
[7] Bataineh, A.S.; Noorani, M.S.M.; Hashim, I., The homotopy analysis method for Cauchy reaction-diffusion problems, Physics letters A, 372, 613-618, (2008) · Zbl 1217.35101
[8] Wang, S.Q.; He, J.H., Variational iteration method for a nonlinear reaction-diffusion process, International journal of chemical reactor engineering, 6, A37, (2008)
[9] He, J.H.; Wu, X.H., Exp-function method for nonlinear wave equations, Chaos, solitons and fractals, 30, 700-708, (2006) · Zbl 1141.35448
[10] He, J.H., The homotopy perturbation method for nonlinear oscillators with discontinuities, Applied mathematics and computation, 151, 287-292, (2004) · Zbl 1039.65052
[11] He, J.H., Application of homotopy perturbation method to nonlinear wave equations, Chaos, solitons and fractals, 26, 695-700, (2005) · Zbl 1072.35502
[12] He, J.H., Homotopy perturbation method for bifurcation of nonlinear problems, International journal of nonlinear science and numerical simulation, 6, 207-208, (2005) · Zbl 1401.65085
[13] He, J.H., Homotopy perturbation method for solving boundary value problems, Physics letters A, 350, 87-88, (2006) · Zbl 1195.65207
[14] He, J.H., Homotopy perturbation technique, Computational methods in applied mechanics and engineering, 178, 257-262, (1999) · Zbl 0956.70017
[15] He, J.H., A coupling method of a homotopy technique and a perturbation technique for non-linear problems, International journal of non-linear mechanics, 35, 37-43, (2000) · Zbl 1068.74618
[16] He, J.H., Homotopy perturbation method: A new nonlinear analytical technique, Applied mathematics and computation, 135, 73-79, (2003) · Zbl 1030.34013
[17] Öziş, T.; Yıldırım, A., A note on he’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity, Chaos, solitons and fractals, 34, 989-991, (2007)
[18] Öziş, T.; Yıldırım, A., A comparative study of he’s homotopy perturbation method for determining frequency-amplitude relation of a nonlinear oscillator with discontinuities, International journal of nonlinear science and numerical simulation, 8, 243-248, (2007)
[19] Öziş, T.; Yıldırım, A., Traveling wave solution of Korteweg-de Vries equation using he’s homotopy perturbation method, International journal of nonlinear science and numerical simulation, 8, 239-242, (2007)
[20] Öziş, T.; Yıldırım, A., Determination of periodic solution for a u(1/3) force by he’ modified lindstedt – poincaré method, Journal of sound and vibration, 301, 415-419, (2007) · Zbl 1242.70044
[21] Yıldırım, A.; Öziş, T., Solutions of singular IVPs of lane – emden type by homotopy perturbation method, Physics letters A, 369, 70-76, (2007) · Zbl 1209.65120
[22] Shakeri, F.; Dehghan, M., Solution of delay equations via a homotopy perturbation method, Mathematical and computer modelling, 38, 486-498, (2008) · Zbl 1145.34353
[23] O. Abdulaziz, I. Hashim, M.S.H. Chowdhury, Solving variational problems by homotopy-perturbation method. International Journal for Numerical Methods in Engineering, doi:10.1002/nme.2509 · Zbl 1195.49039
[24] Miansari, Me; Ganji, D.D.; Miansari, Mo, Jacobi elliptic function solutions of the (1+1)-dimensional dispersive long wave equation by homotopy perturbation method, Numerical methods for partial differential equations, 24, 1361-1370, (2008) · Zbl 1153.65104
[25] Beléndez, A.; Pascual, C.; Ortuño, M.; Beléndez, T.; Gallego, S., Application of a modified he’s homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities, Nonlinear analysis: real world applications, 10, 601-610, (2009) · Zbl 1167.34327
[26] Beléndez, A.; Pascual, C.; Beléndez, T.; Hernández, A., Solution for an anti-symmetric quadratic nonlinear oscillator by a modified he’s homotopy perturbation method, Nonlinear analysis: real world applications, 10, 416-427, (2009) · Zbl 1154.65349
[27] Chowdhury, M.S.H.; Hashim, I., Application of multistage homotopy-perturbation method for the solutions of the Chen system, Nonlinear analysis: real world applications, 10, 381-391, (2009) · Zbl 1154.65350
[28] Chowdhury, M.S.H.; Hashim, I., Solutions of emden – fowler equations by homotopy-perturbation method, Nonlinear analysis: real world applications, 10, 104-115, (2009) · Zbl 1154.34306
[29] He, J.H., Recent development of the homotopy perturbation method, Topological methods in nonlinear analysis, 31, 205-209, (2008) · Zbl 1159.34333
[30] He, J.H., Some asymptotic methods for strongly nonlinear equations, International journal of modern physics B, 20, 1141-1199, (2006) · Zbl 1102.34039
[31] He, J.H., New interpretation of homotopy perturbation method, International journal of modern physics B, 20, 2561-2568, (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.