×

zbMATH — the first resource for mathematics

Strong convergence theorems by a new hybrid projection algorithm for fixed point problems and equilibrium problems of two relatively quasi-nonexpansive mappings. (English) Zbl 1166.47060
Nonlinear Anal., Hybrid Syst. 3, No. 1, 11-20 (2009); corrigendum ibid. 3, No. 2, 176 (2009).
From the summary: The purpose of this paper is to introduce a new hybrid projection algorithm for finding a common element of the set of common fixed points of two relatively quasi-nonexpansive mappings and the set of solutions of an equilibrium problem in the framework of Banach spaces.

MSC:
47J25 Iterative procedures involving nonlinear operators
47H10 Fixed-point theorems
47N10 Applications of operator theory in optimization, convex analysis, mathematical programming, economics
65J15 Numerical solutions to equations with nonlinear operators
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alber, Ya.I.; Reich, S., An iterative method for solving a class of nonlinear operator equations in Banach spaces, Panamer. math. J., 4, 39-54, (1994) · Zbl 0851.47043
[2] Alber, Ya.I., Metric and generalized projection operators in Banach spaces: properties and applications, (), 15-50 · Zbl 0883.47083
[3] Butnariu, D.; Reich, S.; Zaslavski, A.J., Asymptotic behavior of relatively nonexpansive operators in Banach spaces, J. appl. anal., 7, 151-174, (2001) · Zbl 1010.47032
[4] Blum, E.; Oettli, W., From optimization and variational inequalities to equilibrium problems, Math. student, 63, 123-145, (1994) · Zbl 0888.49007
[5] Censor, Y.; Reich, S., Iterations of paracontractions and firmly nonexpansive operators with applications to feasibility and optimization, Optimization, 37, 323-339, (1996) · Zbl 0883.47063
[6] Cioranescu, I., Geometry of Banach spaces, ()
[7] Ceng, L.C.; Yao, J.C., Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings, Appl. math. comput., 198, 729-741, (2008) · Zbl 1151.65058
[8] Ceng, L.C.; Yao, J.C., A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, J. comput. appl. math., 214, 186-201, (2008) · Zbl 1143.65049
[9] Combettes, P.L.; Hirstoaga, S.A., Equilibrium programming in Hilbert spaces, J. nonlinear convex anal., 6, 117-136, (2005) · Zbl 1109.90079
[10] Combettes, P.L.; Hirstoaga, S.A., Equilibrium programming using proximal-like algorithms, Math. program, 78, 29-41, (1997) · Zbl 0890.90150
[11] Cho, Y.J.; Zhou, H.; Guo, G., Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings, Comput. math. appl., 47, 707-717, (2004) · Zbl 1081.47063
[12] Kamimura, S.; Takahashi, W., Strong convergence of a proximal-type algorithm in a Banach space, SIAM J. optim., 13, 938-945, (2002) · Zbl 1101.90083
[13] Matsushita, S.Y.; Takahashi, W., A strong convergence theorem for relatively nonexpansive mappings in a Banach space, J. approx. theory, 134, 257-266, (2005) · Zbl 1071.47063
[14] Matsushita, S.; Takahashi, W., Weak and strong convergence theorems for relatively nonexpansive mappings in Banach spaces, Fixed point theory appl., 2004, 37-47, (2004) · Zbl 1088.47054
[15] Moudafi, A., Second-order differential proximal methods for equilibrium problems, J. inequal. pure appl. math., 4, (2003), art.18 · Zbl 1175.90413
[16] Nilsrakoo, W.; Saejung, S., Strong convergence to common fixed points of countable relatively quasi-nonexpansive mappings, Fixed point theory and appl., (2008) · Zbl 1203.47061
[17] Plubtieng, S.; Punpaeng, R., A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings, Appl. math. comput., 197, 548-558, (2008) · Zbl 1154.47053
[18] Plubtieng, S.; Ungchittrakool, K., Strong convergence theorems for a common fixed point of two relatively nonexpansive mappings in a Banach space, J. approx. theory, 149, 103-115, (2007) · Zbl 1137.47056
[19] Qin, X.; Cho, Y.J.; Kang, S.M., Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces, J. comput. appl. math., (2008)
[20] Qin, X.; Shang, M.; Su, Y., A general iterative method for equilibrium problems and fixed point problems in Hilbert spaces, Nonlinear anal., (2007)
[21] Qin, X.; Shang, M.; Su, Y., Strong convergence of a general iterative algorithm for equilibrium problems and variational inequality problems, Math. comput. modelling, (2008) · Zbl 1187.65058
[22] Reich, S., A weak convergence theorem for the alternating method with Bregman distance, (), 313-318 · Zbl 0943.47040
[23] Su, Y.; Shang, M.; Qin, X., An iterative method of solution for equilibrium and optimization problems, Nonlinear anal., (2007)
[24] Su, Y.; Wang, D.; Shang, M., Strong convergence of monotone hybrid algorithm for hemi-relatively nonexpansive mappings, Fixed point theory appl., (2008) · Zbl 1203.47078
[25] Takahashi, W., Nonlinear functional analysis, (2000), Yokohama-Publishers
[26] Takahashi, S.; Takahashi, W., Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. math. anal. appl., 331, 506-515, (2007) · Zbl 1122.47056
[27] Takahashi, W.; Zembayashi, K., Strong and weak convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Nonlinear anal., (2008)
[28] Takahashi, W.; Zembayashi, K., Strong convergence theorem by a new hybrid method for equilibrium problems and relatively nonexpansive mappings, Fixed point theory appl., (2008) · Zbl 1187.47054
[29] Tada, A.; Takahashi, W., Weak and strong convergence theorems for a nonexpansive mapping and an equilibrium problem, J. optim. theory appl., 133, 359-370, (2007) · Zbl 1147.47052
[30] Yao, Y.; Noor, M.A.; Liou, Y.C., On iterative methods for equilibrium problems, Nonlinear anal., (2008)
[31] Zegeye, H.; Shahzad, N., Strong convergence for monotone mappings and relatively weak nonexpansive mappings, Nonlinear anal., (2008) · Zbl 1135.47054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.