Particle trajectories beneath small-amplitude shallow water waves in constant vorticity flows. (English) Zbl 1166.76010

Summary: We investigate particle trajectories in a constant vorticity shallow water flow over a flat bed as periodic waves propagate on the water free surface. Within the framework of small-amplitude waves, we find the solutions of the nonlinear differential equations system which describes the particle motion in the considered case, and we describe the possible particle trajectories. Depending on the relation between the initial data and the constant vorticity, some particle trajectories are undulating curves to the right, or to the left, others are loops with forward drift, or with backward drift, others can follow some peculiar shapes.


76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
76B47 Vortex flows for incompressible inviscid fluids
Full Text: DOI arXiv


[1] Debnath, L., Nonlinear water waves, (1994), Academic Press Inc. Boston, MA · Zbl 0793.76001
[2] Johnson, R.S., A modern introduction to the mathematical theory of water waves, (1997), Cambridge University Press · Zbl 0892.76001
[3] Kenyon, K.E., Shallow water gravity waves: A note on the particle orbits, J. oceanography, 52, 353-357, (1996)
[4] Lamb, H., Hydrodynamics, (1953), Cambridge University Press · JFM 26.0868.02
[5] Lighthill, J., Waves in fluids, (2001), Cambridge University Press · Zbl 0976.76001
[6] Sommerfeld, A., Mechanics of deformable bodies, (1950), Academic Press Inc. New York · Zbl 0038.37107
[7] Stoker, J.J., Water waves. the mathematical theory with applications, (1957), Interscience Publ. Inc. New York · Zbl 0078.40805
[8] Constantin, A.; Villari, G., Particle trajectories in linear water waves, J. math. fluid mech., 10, 1-18, (2008) · Zbl 1162.76316
[9] Constantin, A.; Ehrnström, M.; Villari, G., Particle trajectories in linear deep-water waves, Nonlinear anal. RWA, 9, 1336-1344, (2008) · Zbl 1154.35429
[10] Stokes, G.G., On the theory of oscillatory waves, Trans. camb. phil. soc., 8, 441-455, (1847), Reprinted in: Stokes G.G., Mathematical and Physical Papers, Volume I, Cambridge University Press, 1880, pp. 197-229
[11] Ionescu-Kruse, D., Particle trajectories in linearized irrotational shallow water flows, J. nonlinear math. phys., 15, 13-27, (2008) · Zbl 1362.76041
[12] Ehrnström, M., On the streamlines and particle paths of gravitational water waves, Nonlinearity, 21, 1141-1154, (2008) · Zbl 1143.35350
[13] Ehrnström, M.; Villari, G., Linear water waves with vorticity: rotational features and particle paths, J. differential equations, 244, 1888-1909, (2008) · Zbl 1148.35068
[14] Constantin, A., The trajectories of particles in Stokes waves, Invent. math., 166, 523-535, (2006) · Zbl 1108.76013
[15] Henry, D., The trajectories of particles in deep-water Stokes waves, Int. math. res. not., 13, (2006), Art. ID 23405 · Zbl 1157.35449
[16] A. Constantin, W. Strauss, Pressure and trajectories beneath a Stokes wave, preprint, 2008
[17] Constantin, A.; Escher, J., Particle trajectories in solitary water waves, Bull. amer. math. soc., 44, 423-431, (2007) · Zbl 1126.76012
[18] Gerstner, F., Theorie der wellen samt einer daraus abgeleiteten theorie der deichprofile, Ann. phys., 2, 412-445, (1809)
[19] Constantin, A., On the deep water wave motion, J. phys. A, 34, 1405-1417, (2001) · Zbl 0982.76015
[20] Constantin, A., Edge waves along a sloping beach, J. phys. A, 34, 9723-9731, (2001) · Zbl 1005.76009
[21] Crapper, G.D., An exact solution for progressive capillary waves of arbitrary amplitude, J. fluid mech., 2, 532-540, (1957) · Zbl 0079.19304
[22] Kinnersley, W., Exact large amplitude capillary waves on sheets of fluids, J. fluid mech., 77, 229-241, (1976) · Zbl 0359.76017
[23] Coutand, D.; Shkoller, S., Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. amer. math. soc., 20, 829-930, (2007) · Zbl 1123.35038
[24] Amick, C.J.; Fraenkel, L.E.; Toland, J.F., On the Stokes conjecture for the wave of extreme form, Acta math., 148, 193-214, (1982) · Zbl 0495.76021
[25] Toland, J.F., Stokes waves, Topol. methods nonlinear anal., 7, 1-48, (1996) · Zbl 0897.35067
[26] Constantin, A.; Strauss, W., Exact steady periodic water waves with vorticity, Comm. pure appl. math., 57, 481-527, (2004) · Zbl 1038.76011
[27] Constantin, A.; Strauss, W., Stability properties of steady water waves with vorticity, Comm. pure appl. math., 60, 911-950, (2007) · Zbl 1125.35081
[28] Kamke, E., Differentialgleichungen, Lösungsmethoden und Lösungen, vol. I, (1967), Akademische Verlagsgesellschaft Geest & Portig K.-G. Leipzig · JFM 68.0179.01
[29] V. Smirnov, Cours de Mathématiques supérieures, Tome III, deuxième partie, Mir, Moscou, 1972
[30] Byrd, P.F.; Friedman, M.D., Handbook of elliptic integrals for engineers and scientists, (1971), Springer-Verlag Berlin, Heidelberg, New York · Zbl 0213.16602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.