×

zbMATH — the first resource for mathematics

Invariant approximations in CAT(0) spaces. (English) Zbl 1167.47042
Summary: Some common fixed point and invariant approximation results for CAT(0) spaces are obtained. Our results improve and extend some results of N. Shahzad and J. Markin [J. Math. Anal. Appl. 337, No. 2, 1457–1464 (2008; Zbl 1137.47043)] and of S. Dhompongsa, A. Kaewkhao and B. Panyanak [J. Math. Anal. Appl. 312, No. 2, 478–487 (2005; Zbl 1086.47019)].

MSC:
47H10 Fixed-point theorems
41A65 Abstract approximation theory (approximation in normed linear spaces and other abstract spaces)
54H25 Fixed-point and coincidence theorems (topological aspects)
58C30 Fixed-point theorems on manifolds
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bridson, M.; Haefliger, A., Metric spaces of nonpositive curvature, (1999), Springer-Verlag Berlin
[2] Kirk, W.A., Geodesic geometry and fixed point theory. II, (), 113-142 · Zbl 1083.53061
[3] Kirk, W.A., Geodesic geometry and fixed point theory, (), 195-225 · Zbl 1058.53061
[4] Aksoy, A.G.; Khamsi, M.A., A selection theorem in metric trees, Proc. amer. math. soc., 134, 2957-2966, (2006) · Zbl 1102.54022
[5] Kaewcharoen, A.; Kirk, W.A., Proximinality in geodesic spaces, Abstr. appl. anal., 2006, 1-10, (2006), Article ID 43591 · Zbl 1141.51011
[6] Kirk, W.A., Fixed point theorems in CAT(0) spaces and \(\mathbb{R}\)-trees, Fixed point theory appl., 4, 309-316, (2004) · Zbl 1089.54020
[7] Kirk, W.A.; Panyanak, B., A concept of convergence in geodesic spaces, Nonlinear anal., 68, 3689-3696, (2008) · Zbl 1145.54041
[8] Markin, J., Best approximation and fixed point theorems in hyperconvex metric spaces, Nonlinear anal., 63, 1841-1846, (2005)
[9] Dhompongsa, S.; Kaewkhao, A.; Panyanak, B., Lim’s theorem for multivalued mappings in CAT(0) spaces, J. math. anal. appl., 312, 478-487, (2005) · Zbl 1086.47019
[10] Shahzad, N.; Markin, J., Invariant approximation for commuting mappings in hyperconvex and CAT(0) spaces, J. math. anal. appl., 337, 1457-1464, (2008) · Zbl 1137.47043
[11] Kirk, W.A., Hyperconvexity of \(\mathbb{R}\)-trees, Fund. math., 156, 67-72, (1998) · Zbl 0913.54030
[12] Espinola, R.; Kirk, W.A., Fixed point theorems in \(\mathbb{R}\)-trees with applications to graph theory, Topology appl., 153, 1046-1055, (2006) · Zbl 1095.54012
[13] García-Falset, J.; Llorens-Fuster, E.; Prus, S., The fixed point property for mappings admitting a center, Nonlinear anal., 66, 1257-1274, (2007) · Zbl 1118.47043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.