×

zbMATH — the first resource for mathematics

Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load. (English) Zbl 1167.74333
Summary: A network of polymers can imbibe a large quantity of a solvent and swell, resulting in a gel. The swelling process can be markedly influenced by a mechanical load and geometric constraint. When the network, solvent, and mechanical load equilibrate, inside the gel the chemical potential of the solvent is homogeneous, but the concentration of the solvent and the deformation of the network can be inhomogeneous. We use the chemical potential of the solvent and the deformation gradient of the network as the independent variables of the free-energy function, and show that the boundary value problem of the swollen gel is equivalent to that of a hyperelastic solid. We implement this approach in the finite-element package, ABAQUS, and analyze examples of swelling-induced deformation, contact, and bifurcation. Because commercial software like ABAQUS is widely available, this work may provide a powerful tool to study complex phenomena in gels.

MSC:
74B20 Nonlinear elasticity
74E05 Inhomogeneity in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
Software:
ABAQUS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atkin, R. J.; Craine, R. E.: Continuum theories of mixtures: basic theory and historical development, Q. J. Mech. appl. Math. 29, 209-244 (1976) · Zbl 0339.76003 · doi:10.1093/qjmam/29.2.209
[2] Baek, S.; Srinivasa, A. R.: Diffusion of a fluid through an elastic solid undergoing large deformation, Int. J. Non-linear mech. 39, 201-218 (2004) · Zbl 1213.76072 · doi:10.1016/S0020-7462(02)00153-1
[3] Beebe, D. J.; Moore, J. S.; Bauer, J. M.; Yu, Q.; Liu, R. H.; Devadoss, C.; Jo, B. H.: Functional hydrogel structures for autonomous flow control inside microfluidic channels, Nature 404, 588-590 (2000)
[4] Bassetti, M. J.; Chatterjee, A. N.; Aluru, N. R.; Beebe, D. J.: Development and modeling of electrically triggered hydrogels for microfluidic applications, J. microelectromech. Syst. 14, 1198-1207 (2005)
[5] Biot, M. A.: General theory of three-dimensional consolidation, J. appl. Phys. 12, 155-164 (1941) · JFM 67.0837.01 · doi:10.1063/1.1712886
[6] Boyce, M. C.; Arruda, E. M.: Swelling and mechanical stretching of elastomeric materials, Math. mech. Solids 6, 641-659 (2001) · Zbl 1076.74005 · doi:10.1177/108128650100600605
[7] Cho, E. C.; Kim, J. W.; Fernandez-Nieves, A.; Weitz, D. A.: Highly responsive hydrogel scaffolds formed by three-dimensional organization of microgel nanoparticles, Nano lett. 8, 168-172 (2008)
[8] Demirkoparan, H.; Pence, T. J.: Swelling of an internally pressurized nonlinearly elastic tube with fiber reinforcing, Int. J. Solids struct. 44, 4009-4029 (2007) · Zbl 1178.74041 · doi:10.1016/j.ijsolstr.2006.11.006
[9] Dong, L.; Agarwal, A. K.; Beebe, D. J.; Jiang, H. R.: Adaptive liquid microlenses activated by stimuli-responsive hydrogels, Nature 442, 551-554 (2006)
[10] Dolbow, J.; Fried, E.; Ji, H.: A numerical strategy for investigating the kinetic response of stimulus-responsive hydrogels, Comput. meth. Appl. mech. Eng. 194, 4447-4480 (2005) · Zbl 1094.76039 · doi:10.1016/j.cma.2004.12.004
[11] Durning, C. J.; Morman, K. N.: Nonlinear swelling of polymer gels, J. chem. Phys. 98, 4275-4293 (1993)
[12] Flory, P. J.; Rehner, J.: Statistical mechanics of cross-linked polymer networks II swelling, J. chem. Phys. 11, 521-526 (1943)
[13] Gandhi, M. V.; Usman, M.: Equilibrium characterization of fluid-saturated continua and an interpretation of the saturation boundary condition assumption for solid – fluid mixtures, Int. J. Eng. sci. 27, 539-548 (1989) · Zbl 0681.76008 · doi:10.1016/0020-7225(89)90006-2
[14] Gandhi, M. V.; Usman, M.: On the non-homogenous finite swelling of a nonlinearly elastic cylinder with a rigid core, Int. J. Nonliner mech. 24, 251-261 (1989) · Zbl 0695.73012 · doi:10.1016/0020-7462(89)90044-9
[15] Gandhi, M. V.; Usman, M.; Wineman, A. S.; Rajagopal, K. R.: Combined extension and torsion of a swollen cylinder within the context of mixture theory, Acta mech. 19, 81-96 (1989) · Zbl 0711.73177 · doi:10.1007/BF01181481
[16] Gandhi, M. V.; Kasiviswnathan, S. R.; Usman, M.: Flexure of a fluid-saturated cuboid, Acta mech. 111, 209-222 (1995) · Zbl 0855.73009 · doi:10.1007/BF01376931
[17] Gibbs, J.W., 1878. The scientific papers of J. Willard Gibbs, pp. 184, 201, 215. Digital copy of the book is freely available at <http://books.google.com/>.
[18] Hong, W.; Zhao, X. H.; Zhou, J. X.; Suo, Z. G.: A theory of coupled diffusion and large deformation in polymeric gels, J. mech. Phys. solids 56, 1779-1793 (2008) · Zbl 1162.74313 · doi:10.1016/j.jmps.2007.11.010
[19] Hong, W.; Zhao, X. H.; Suo, Z. G.: Drying-induced bifurcation in a hydrogel-actuated nanostructures, J. appl. Phys. 104, 084905 (2008)
[20] Horkay, F.; Mckenna, G. B.: Polymer networks and gels, Physical properties of polymers handbook, 497-523 (2007)
[21] Hu, Z. B.; Zhang, X. M.; Li, Y.: Synthesis and application of modulated polymer gels, Science 269, 525-527 (1995)
[22] Hui, C. Y.; Muralidharan, V.: Gel mechanics: a comparision of the theories of Biot and tanaka, hocker, and benedek, J. chem. Phys. 123, 154905 (2005)
[23] Kim, S. J.; Spinks, G. M.; Prosser, S.; Whitten, P. G.; Wallace, G. G.; Kim, S. I.: Surprising shrinkage of expanding gels under external load, Nat. mater. 5, 48-51 (2006)
[24] Kleverlaan, M., van Noort, R.H., Jones, I., 2005. Deployment of swelling elastomer packers in Shell E&P, SPE/IADC Conference, 92346 Amsterdam, The Netherlands, 23 – 25 February 2005.
[25] Klein, Y.; Efrati, E.; Sharon, E.: Shaping of elastic sheets by prescription of non-Euclidean metrices, Science 315, 1116-1120 (2007) · Zbl 1226.74013 · doi:10.1126/science.1135994
[26] Ladet, S.; David, L.; Domard, A.: Multi-membrane hydrogels, Nature 452, 76-79 (2008)
[27] Lee, K. Y.; Mooney, D. J.: Hydrogels for tissue engineering, Chem. rev. 101, 1869-1879 (2001)
[28] Li, H.; Luo, R.; Birgersson, E.; Lam, K. Y.: Modeling of multiphase smart hydrogels responding to ph and electric voltage coupled stimuli, J. appl. Phys. 101, 114905 (2007)
[29] Peppas, N. A.; Hilt, J. Z.; Khademhosseini, A.; Langer, R.: Hydrogels in biology and medicine: from molecular principles to bionanotechnology, Adv. mater. 18, 1345-1360 (2006)
[30] Rajagopal, K. R.; Wineman, A. S.; Gandhi, M.: On boundary conditions for a certain class of problems in mixture theory, Int. J. Eng. sci. 24, 1453-1463 (1986) · Zbl 0594.73007 · doi:10.1016/0020-7225(86)90074-1
[31] Rajagopal, K. R.; Tao, L.: Mechanics of mixtures, Advances in mathematics for the applied sciences (1995) · Zbl 0941.74500
[32] Riks, E.: The application of Newton’s method to the problem of elastic stability, J. appl. Mech. 39, 1060-1066 (1972) · Zbl 0254.73047 · doi:10.1115/1.3422829
[33] Sekimoto, K.: Thermodynamics and hydrodynamics of chemical gels, J. phys. II 1, 19-36 (1991)
[34] Shi, J. J.; Rajagopal, K. R.; Wineman, A. S.: Applications of the theory of interacting continua to the diffusion of a fluid through a nonlinearly elastic media, Int. J. Eng. sci. 19, 871 (1981) · Zbl 0495.73047 · doi:10.1016/0020-7225(81)90121-X
[35] Sidorenko, A.; Krupenkin, T.; Taylor, A.; Fratzl, P.; Aizenberg, J.: Reversible switching of hydrogel-actuated nanostructures into complex micropatterns, Science 315, 487-490 (2007)
[36] Sternstein, S. S.: Inhomogeneous swelling in filled elastomers, J. macromol. Sci. phys. 6, No. 1, 243-262 (1972)
[37] Southern, E.; Thomas, A. G.: Effect of constraints on the equilibrium swelling of rubber vulcanizates, J. polym. Sci. A 3, 641-646 (1965)
[38] Treloar, L. R. G.: The swelling of cross-linked amorphous polymers under strain, Trans. Faraday soc. 46, 783-789 (1950)
[39] Treloar, L. R. G.: The physics of rubber elasticity, (1975) · Zbl 0347.73042
[40] Treloar, L. R. G.: Swelling of bonded-rubber cylinders, Polymer 17, 142-146 (1976)
[41] Trujillo, V.; Kim, J.; Hayward, R. C.: Creasing instability of surface-attached hydrogels, Soft matter 4, 564-569 (2008)
[42] Tsai, H.; Pence, T. J.; Kirkinis, E.: Swelling induced finite strain flexure in a rectangular block of an isotropic elastic material, J. elasticity 75, 69-89 (2004) · Zbl 1058.74022 · doi:10.1023/B:ELAS.0000039924.09593.72
[43] Westbrook, K. K.; Qi, H. J.: Actuator designs using environmentally responsive hydrogels, J. intelligent mater. Syst. struct. 19, 597-607 (2008)
[44] Wichterle, O.; Lim, D.: Hydrophilic gels for biological use, Nature 185, 117-118 (1960)
[45] Wong, A. P.; Perez-Castillejos, R.; Love, J. C.; Whitesides, G. M.: Partitioning microfluidics channels with hydrogel to construct tunable 3-D cellular microenvironments, Biomaterials 29, 1853-1861 (2008)
[46] Zhang, Y.; Matsumoto, E. A.; Peter, A.; Lin, P. C.; Kamien, R. D.; Yang, S.: One-step nanoscale assembly of complex structures via harnessing of an elastic instability, Nano lett. 8, 1192-1196 (2008)
[47] Zhao, X. H.; Hong, W.; Suo, Z. G.: Inhomogeneous and anisotropic equilibrium state of a swollen hydrogel containing a hard core, Appl. phys. Lett. 92, 051904 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.