×

zbMATH — the first resource for mathematics

Size-dependent response of ultra-thin films with surface effects. (English) Zbl 1167.74497
Summary: A modified continuum model of elastic films with nano-scale thickness is proposed by incorporating surface elasticity into the conventional nonlinear Von Karman plate theory. By using Hamilton’s principle, the governing equations and boundary conditions of the ultra-thin film including surface effects are derived within the Kirchhoff’s assumption, where the effects of non-zero normal stress and large deflection are taken into account simultaneously. The present model is then applied to studying the bending, buckling and free vibration of simply supported micro/nano-scale thin films in-plane strains and explicit exact solutions can be obtained for these three cases. The size-dependent mechanical behavior of the thin film due to surface effects is well elucidated in the obtained solutions.

MSC:
74K35 Thin films
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Cammarata, R. C.: Surface and interface stress effects in thin-films, Progress in surface science 46, No. 1, 1-38 (1994)
[2] Cammarata, R. C.; Sieradzki, K.: Effects of surface stress on the elastic moduli of thin films and superlattices, Physical review letters 62, 2005-2008 (1989)
[3] Craighead, H. G.: Nanoelectromechanical systems, Science 290, 1532-1535 (2000)
[4] Cuenot, S.; Fretigny, C.; Demoustier-Champagne, S.; Nysten, B.: Surface tension effect on the mechanical properties of nanomaterials measured by atomic force microscopy, Physical review B 69, 165410 (2004)
[5] Freund, L. B.; Suresh, S.: Thin film materials: stress, Defect formation and surface evolution (2003) · Zbl 1152.74301
[6] Guo, J. G.; Zhao, Y. P.: The size-dependent elastic properties of nanofilms with surface effects, Journal of applied physics 98, No. 7, 074306 (2005)
[7] Gurtin, M. E.; Murdoch, A. I.: A continuum theory of elastic material surfaces, Archive for rational mechanics and analysis 57, 291-323 (1975) · Zbl 0326.73001 · doi:10.1007/BF00261375
[8] Gurtin, M. E.; Murdoch, A. I.: Addenda to our paper: a continuum theory of elastic material surfaces, Archive for rational mechanics and analysis 59, 389-390 (1975) · Zbl 0349.73008
[9] Gurtin, M. E.; Murdoch, A. I.: Surface stress in solids, International journal of solids and structures 14, 431-440 (1978) · Zbl 0377.73001 · doi:10.1016/0020-7683(78)90008-2
[10] He, L. H.; Li, Z. R.: Impact of surface stress on stress concentration, International journal of solids and structures 43, No. 20, 6208-6219 (2006) · Zbl 1120.74501 · doi:10.1016/j.ijsolstr.2005.05.041
[11] He, L. H.; Lim, C. W.; Wu, B. S.: A continuum model for size-dependent deformation of elastic films of nano-scale thickness, International journal of solids and structures 41, No. 3 – 4, 847-857 (2004) · Zbl 1075.74576 · doi:10.1016/j.ijsolstr.2003.10.001
[12] Liang, L. H.; Li, J. C.; Jiang, Q.: Size-dependent elastic modulus of cu and au thin films, Solid state communications 121, No. 8, 453-455 (2002)
[13] Lim, C. W.; He, L. H.: Size-dependent nonlinear response of thin elastic films with nano-scale thickness, International journal of mechanical sciences 46, No. 11, 1715-1726 (2004) · Zbl 1098.74640 · doi:10.1016/j.ijmecsci.2004.09.003
[14] Lu, P.; He, L. H.; Lee, H. P.; Lu, C.: Thin plate theory including surface effects, International journal of solids and structures 43, No. 16, 4631-4647 (2006) · Zbl 1120.74602 · doi:10.1016/j.ijsolstr.2005.07.036
[15] Miller, R. E.; Shenoy, V. B.: Size-dependent elastic properties of nanosized structural elements, Nanotechnology 11, No. 3, 139-147 (2000)
[16] Muller, P.; Saul, A.: Elastic effects on surface physics, Surface science reports 54, No. 5 – 8, 157-258 (2004)
[17] Reddy, J. N.: Theory and ananlysis of elastic plates, (1999)
[18] Sharma, P.; Ganti, S.: Size-dependent eshelby’s tensor for embedded nano-inclusions incorporating surface/interface energies, Journal of applied mechanics-transactions of the asme 71, No. 5, 663-671 (2004) · Zbl 1111.74629 · doi:10.1115/1.1781177
[19] Shim, H. W.; Zhou, L. G.; Huang, H. C.; Cale, T. S.: Nanoplate elasticity under surface reconstruction, Applied physics letters 86, No. 15, 151912 (2005)
[20] Sun, C. T.; Zhang, H. T.: Size-dependent elastic moduli of platelike nanomaterials, Journal of applied physics 93, No. 2, 1212-1218 (2003)
[21] Wolf, D.: Surface-stress-induced structure and elastic behavior of thin films, Applied physics letters 58, 2081-2083 (1991)
[22] Wong, E. W.; Sheehan, P. E.; Lieber, C. M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science 277, No. 5334, 1971-1975 (1997)
[23] Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, Y. Q.: One-dimensional nanostructures: synthesis, characterization and applications, Advanced materials 15, No. 5, 353-389 (2003)
[24] Yu, Y. -Y.: Vibrations of elastic plates, (1995)
[25] Zhang, H. T.; Sun, C. T.: Nanoplate model for platelike nanomaterials, AIAA journal 42, No. 10, 2002-2009 (2004)
[26] Zhou, L. G.; Huang, H. C.: Are surfaces elastically softer or stiffer?, Applied physics letters 84, 1940-1942 (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.