Truncation of scales by time relaxation. (English) Zbl 1167.76338

Summary: We study a time relaxation regularization of flow problems proposed and tested extensively by Stolz and Adams. The aim of the relaxation term is to drive the unresolved fluctuations in a computational simulation to zero exponentially fast by an appropriate and often problem dependent choice of its coefficient; this relaxation term is thus intermediate between a tunable numerical stabilization and a continuum modeling term. Our aim herein is to understand how this term, by itself, acts to truncate solution scales and to use this understanding to give insight into parameter selection.


76F65 Direct numerical and large eddy simulation of turbulence
35Q35 PDEs in connection with fluid mechanics
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI Link


[1] Adams, N.A.; Stolz, S., Deconvolution methods for subgrid-scale approximation in large eddy simulation, () · Zbl 1147.76506
[2] Adams, N.A.; Stolz, S., A subgrid-scale deconvolution approach for shock capturing, J. comput. phys., 178, 391-426, (2002) · Zbl 1139.76319
[3] J. Bardina, Improved turbulence models based on large eddy simulation of homogeneous, incompressible turbulent flows, PhD thesis, Stanford University, Stanford, 1983
[4] Bertero, M.; Boccacci, B., Introduction to inverse problems in imaging, (1998), IOP Publishing Ltd. · Zbl 0914.65060
[5] Berselli, L.C.; Iliescu, T.; Layton, W., Mathematics of large eddy simulation of turbulent flows, (2005), Springer Berlin · Zbl 1089.76002
[6] Childress, S.; Kerswell, R.R.; Gilbert, A.D., Bounds on dissipation for navier – stokes flows with Kolmogorov forcing, Phys. D, 158, 1-4, (2001) · Zbl 1098.76525
[7] Constantin, P.; Doering, C., Energy dissipation in shear driven turbulence, Phys. rev. lett., 69, 1648-1651, (1992)
[8] Doering, C.; Foias, C., Energy dissipation in body-forced turbulence, J. fluid mech., 467, 289-306, (2002) · Zbl 1029.76025
[9] A. Dunca, Y. Epshteyn, On the Stolz-Adams de-convolution LES mode, SIAM J. Math. Anal., 2006, in press · Zbl 1128.76029
[10] Foias, C., What do the navier – stokes equations tell us about turbulence?, (), 151-180 · Zbl 0890.76030
[11] Foias, C.; Holm, D.D.; Titi, E., The navier – stokes-alpha model of fluid turbulence, Phys. D, 152-153, 505-519, (2001) · Zbl 1037.76022
[12] Frisch, U., Turbulence, (1995), Cambridge Univ. Press · Zbl 0727.76064
[13] Galdi, G.P., Lectures in mathematical fluid dynamics, (2000), Birkhäuser
[14] Galdi, G.P., An introduction to the mathematical theory of the navier – stokes equations, volume I, (1994), Springer Berlin · Zbl 0949.35004
[15] Galdi, G.P.; Layton, W.J., Approximation of the large eddies in fluid motion II: A model for space-filtered flow, Math. models methods appl. sci., 10, 343-350, (2000) · Zbl 1077.76522
[16] Germano, M., Differential filters of elliptic type, Phys. fluids, 29, 1757-1758, (1986) · Zbl 0647.76042
[17] Geurts, B.J., Inverse modeling for large eddy simulation, Phys. fluids, 9, 3585, (1997)
[18] R. Guenanff, Non-stationary coupling of Navier-Stokes/Euler for the generation and radiation of aerodynamic noises, PhD thesis, Dept. of Mathematics, Universite Rennes 1, Rennes, France, 2004
[19] Hirt, C.W., Phys. fluids, suppl. II, 219-227, (1969)
[20] John, V., Large eddy simulation of turbulent incompressible flows, (2004), Springer Berlin
[21] Ladyzhenskaya, O., The mathematical theory of viscous incompressible flow, (1969), Gordon and Breach · Zbl 0184.52603
[22] Layton, W.; Lewandowski, R., A simple and stable scale similarity model for large eddy simulation: energy balance and existence of weak solutions, Appl. math. lett., 16, 1205-1209, (2003) · Zbl 1039.76027
[23] Layton, W.; Lewandowski, R., On a well posed turbulence model, Dcds-b, 6, 111-178, (2006) · Zbl 1089.76028
[24] Lesieur, M., Turbulence in fluids, (1997), Kluwer Acad. Publ. · Zbl 0876.76002
[25] Layton, W.; Lewandowski, R., Consistency and feasibility of approximate de-convolution models of turbulence · Zbl 1089.76028
[26] D.K. Lilly, The representation of small-scale turbulence in numerical simulation experiments, in: Proc. IBM Scientific Computing Symposium on Environmental Sciences, Yorktown Heights, 1967
[27] C. Manica, S. Kaya, Convergence analysis of the finite element method for a fundamental model in turbulence, Tech. Report, Dept. of Mathematics, Univ. of Pittsburgh, 2005 · Zbl 1252.76043
[28] Muschinsky, A., A similarity theory of locally homogeneous and isotropic turbulence generated by a smagorinsky-type LES, J. fluid mech., 325, 239-260, (1996) · Zbl 0891.76045
[29] Pope, S., Turbulent flows, (2000), Cambridge Univ. Press · Zbl 0966.76002
[30] Reynolds, O., On the dynamic theory of incompressible viscous fluids and the determination of the criterion, Phil. trans. R. soc. London A, 186, 123-164, (1895) · JFM 26.0872.02
[31] Rosenau, Ph., Extending hydrodynamics via the regularization of the chapman – enskog expansion, Phys. rev. A, 40, 7193, (1989)
[32] Saddoughi, S.G.; Veeravalli, S.V., Local isotropy in turbulent boundary layers at high Reynolds number, J. fluid mech., 268, 333-372, (1994)
[33] Sagaut, P., Large eddy simulation for incompressible flows, (2001), Springer Berlin · Zbl 0964.76002
[34] Schochet, S.; Tadmor, E., The regularized chapman – enskog expansion for scalar conservation laws, Arch. ration. mech. anal., 119, 95, (1992) · Zbl 0793.76005
[35] Sreenivasan, K.R., On the scaling of the turbulent energy dissipation rate, Phys. fluids, 27, 5, 1048-1051, (1984)
[36] Sreenivasan, K.R., An update on the energy dissipation rate in isotropic turbulence, Phys. fluids, 10, 2, 528-529, (1998) · Zbl 1185.76674
[37] Stolz, S.; Adams, N.A., An approximate deconvolution procedure for large eddy simulation, Phys. fluids II, 1699-1701, (1999) · Zbl 1147.76506
[38] Stolz, S.; Adams, N.A.; Kleiser, L., The approximate deconvolution model for LES of compressible flows and its application to shock-turbulent-boundary-layer interaction, Phys. fluids, 13, 2985, (2001) · Zbl 1184.76531
[39] Stolz, S.; Adams, N.A.; Kleiser, L., An approximate deconvolution model for large eddy simulation with application to wall-bounded flows, Phys. fluids, 13, 997, (2001) · Zbl 1184.76530
[40] Stolz, S.; Adams, N.A.; Kleiser, L., The approximate deconvolution model for compressible flows: isotropic turbulence and shock-boundary-layer interaction, () · Zbl 1088.76022
[41] Wang, X., The time averaged energy dissipation rates for shear flows, Phys. D, 99, 555-563, (1997), 2004 · Zbl 0897.76019
[42] Wyngaard, J.C.; Pao, Y.H., Some measurements of fine structure of large Reynolds number turbulence, (), 384-401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.