×

zbMATH — the first resource for mathematics

Review of convective heat transfer enhancement with nanofluids. (English) Zbl 1167.80338
Summary: Nanofluids are considered to offer important advantages over conventional heat transfer fluids. Over a decade ago, researchers focused on measuring and modeling the effective thermal conductivity and viscosity of nanofluids. Recently important theoretical and experimental research works on convective heat transfer appeared in the open literatures on the enhancement of heat transfer using suspensions of nanometer-sized solid particle materials, metallic or nonmetallic in base heat transfer fluids. The purpose of this review article is to summarize the important published articles on the enhancement of the forced convection heat transfer with nanofluids.

MSC:
80A20 Heat and mass transfer, heat flow (MSC2010)
76T20 Suspensions
80-02 Research exposition (monographs, survey articles) pertaining to classical thermodynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J.A. Eastman, S.U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhancement thermal conductivity through the development of nanofluids, in: 1996 Fall meeting of the Materials Research Society (MRS), Boston, USA, 1997.
[2] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: The Proceedings of the 1995 ASME International Mechanical Engineering Congress and Exposition, San Francisco, USA, ASME, FED 231/MD 66, 1995, pp. 99 – 105.
[3] Choi, S. U. S.; Zhang, Z. G.; Yu, W.; Lockwood, F. E.; Grulke, E. A.: Anomalously thermal conductivity enhancement in nanotube suspensions, Appl. phys. Lett. 79, 2252-2254 (2001)
[4] H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, Alterlation of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (Dispersion of g-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei 7 (1993) 227 – 233.
[5] Lee, S.; Choi, S. U. S.; Li, S.; Eastman, J. A.: Measuring thermal conductivity of fluids containing oxide nanoparticles, Trans. ASME, J. Heat transfer 121, 280-289 (1999)
[6] Xuan, Y.; Li, Q.: Heat transfer enhancement of nanofluids, Int. J. Heat fluid flow 21, 58-64 (2000)
[7] Xuan, Y.; Roetzel, W.: Conceptions for heat transfer correlation of nanofluids, Int. J. Heat mass transfer 43, 3701-3707 (2000) · Zbl 0963.76092 · doi:10.1016/S0017-9310(99)00369-5
[8] Granquist, C. G.; Buhrman, R. A.: Ultrafine metal particles, J. appl. Phys. 47, 2200-2219 (1976)
[9] Yu, W.; France, D. M.; Choi, S. U. S.; Routbort, J. L.: Review and assessment of nanofluid technology for transportation and other applications, ANL/ESD/07 – 9, (2007)
[10] Maxwell, J. C.: Treatise on electricity and magnetism, (1904) · JFM 05.0556.01
[11] Hamilton, R. L.; Crosser, O. K.: Thermal conductivity of heterogeneous two-component systems, Ind. eng. Chem. fundam. 1, 182-191 (1962)
[12] Yu, W.; Choi, S. U. S.: The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. nanoparticle res. 5, 167-171 (2003)
[13] Schwartz, L. M.; Bentz, D. P.; Garboczi, E. J.: Interfacial transport in porous media: application to DC electrical conductivity of mortars, J. appl. Phys. 78, 5898-5908 (1995)
[14] Wang, X.; Xu, X.; Choi, S. U. S.: Thermal conductivity of nanoparticle-fluid mixture, J. thermophys. Heat transfer 13, 474-480 (1999)
[15] Das, S. K.; Putra, N.; Thiesen, P.; Roetzel, W.: Temperature dependence of thermal conductivity enhancement of nanofluids, Trans. ASME, J. Heat transfer 125, 567-574 (2003)
[16] Das, S. K.; Putra, N.; Roetzel, W.: Pool boiling characteristics of nano-fluids, Int. J. Heat mass transfer 46, 851-862 (2003) · Zbl 1136.76489
[17] Das, S. K.; Putra, N.; Roetzel, W.: Pool boiling of nano-fluids on horizontal narrow tubes, Int. J. Multiphase flow 29, 1237-1247 (2003) · Zbl 1136.76489 · doi:10.1016/S0301-9322(03)00105-8
[18] Xie, H.; Wang, J.; Xi, T.; Liu, Y.: Thermal conductivity of suspensions containing nanosized sic particles, Int. J. Thermophys. 23, 571-580 (2002)
[19] Xie, H.; Wang, J.; Xi, T.; Ai, F.: Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. appl. Phys. 91, 4568-4572 (2002)
[20] Xie, H.; Wang, J.; Xi, T.; Liu, Y.; Ai, F.: Dependence of the thermal conductivity of nanoparticles-fluid mixture on the base fluid, J. mater. Sci. lett. 21, 1469-1471 (2002)
[21] Wen, D.; Ding, Y.: Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat mass transfer 47, 5181-5188 (2004)
[22] Wen, D.; Ding, Y.: Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids), J. thermophys. Heat transfer 18, 481-485 (2004)
[23] Li, C. H.; Peterson, G. P.: Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), J. appl. Phys. 99, 084314 (2006)
[24] Eastman, J. A.; Choi, S. U. S.; Li, S.; Yu, W.; Thompson, L. J.: Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. phys. Lett. 78, 718-720 (2001)
[25] Heris, S. Z.; Etemad, G.; Esfahany, M. N.: Experimental investigation of oxide nanofluids laminar flow convection heat transfer, Int. comm. Heat mass transfer 33, 529-535 (2006)
[26] Pak, B. C.; Cho, Y. I.: Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. heat transfer 11, 151-170 (1998)
[27] Xuan, Y.; Li, Q.: Investigation convective heat transfer and flow features of nanofluids, J. heat transfer 125, 151-155 (2002)
[28] Yang, Y.; Zhang, Z. G.; Grulke, E. A.; Anderson, W. B.; Wu, G.: Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat mass transfer 48, 1107-1116 (2005)
[29] Ding, Y.; Alias, H.; Wen, D.; Williams, R. A.: Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids), Int. J. Heat mass transfer 49, 240-250 (2006)
[30] Ma, H. B.; Wilson, C.; Borgmeyer, B.; Park, K.; Yu, Q.: Effect of nanofluid on the heat transport capability in an oscillatory heat pipe, Appl. phys. Lett. 88, 143116 (2006)
[31] Chen, H.; Yang, W.; He, Y.; Ding, Y.; Zhang, L.; Tan, C.; Lapkin, A. A.; Bavykin, D. V.: Heat trasnfer behaviour of aqueous suspensions of titanate nanofluids, Powder technol. 183, 63-72 (2008)
[32] Kulkarni, D. P.; Namburu, P. K.; Bargar, H. Ed; Das, D. K.: Convective heat transfer and fluid dynamic characteristics of sio2 ethylene glycol/water nanofluid, Heat transfer eng. 29, No. 12, 1027-1035 (2008)
[33] Bhattacharya, P.; Saha, S. K.; Yadav, A.; Phelan, P. E.; Prasher, R. S.: Brownian dynamics simulation to determine the effect thermal conductivity of nanofluids, J. appl. Phys. 95, 6492-6494 (2004)
[34] Xue, L.; Keblinski, P.; Phillpot, S. R.; Choi, S. U. S.; Eastman, J. A.: Effect of liquid layering at the liquid – solid interface on thermal transport, Int. J. Heat mass transfer 47, 4277-4284 (2004) · Zbl 1111.76333 · doi:10.1016/j.ijheatmasstransfer.2004.05.016
[35] Pozhar, L. A.: Structure and dynamics of nanofluids: theory and simulations to calculate viscosity, Phys. rev. E 61, 1432-1446 (2000)
[36] Gupte, S. K.; Advani, S. G.; Huq, P.: Role of micro-convection due to non-affine motion of particles in a mono-disperse suspension, Int. J. Heat mass transfer 38, 2945-2958 (1995)
[37] Sato, Y.; Deutsch, E.; Simonin, O.: Direct numerical simulations of heat transfer by solid particles suspended in homogeneous isotropic turbulence, Int. J. Heat fluid flow 19, 187-192 (1998)
[38] Ali, A.; Vafai, K.; Khaled, A. R. A.: Comparative study between parallel and counter flow configurations between air and falling film desiccant in the presence of nanoparticle suspensions, Int. J. Energy res. 27, 725-745 (2003)
[39] Khanafer, K.; Vafai, K.; Lightstone, M.: Bouyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids, Int. J. Heat mass transfer 46, 3639-3653 (2003) · Zbl 1042.76586 · doi:10.1016/S0017-9310(03)00156-X
[40] Ali, A.; Vafai, K.; Khaled, A. R. A.: Analysis of heat and mass transfer between air and falling film in a cross flow configuration, Int. J. Heat mass transfer 47, 743-755 (2004)
[41] Gosselin, L.; Da Silva, A. K.: Combined heat transfer and power dissipation opimization of nanofluid flows, Appl. phys. Lett. 85, 4160-4162 (2004)
[42] Kim, J.; Kang, Y. T.; Choi, C. K.: Analysis of convective instability and heat transfer characteristics of nanofluids, Phys. fluids 16, 2395-2401 (2004) · Zbl 1186.76282 · doi:10.1063/1.1739247
[43] Maïga, S. E. B.; Nguyen, C. T.; Galanis, N.; Roy, G.: Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattices microstruct. 35, 543-557 (2004)
[44] Roy, G.; Nguyen, C. T.; Lajoie, P. R.: Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlattices microstruct. 35, 497-511 (2004)
[45] Shenogin, S.; Xue, L.; Ozisik, R.; Keblinski, P.; Cahill, D. G.: Role of thermal boundary resistance on the heat flow in carbon-nanotube composited, J. appl. Phys. 95, 8136-8144 (2004)
[46] Ding, Y.; Wen, D.: Particle migration in a flow of nanoparticle suspensions, Powder technol. 149, 84-92 (2005)
[47] Khaled, A. R. A.; Vafai, K.: Heat transfer enhancement through control of thermal dispersion effects, Int. J. Heat mass transfer 48, 2172-2185 (2005) · Zbl 1189.76169 · doi:10.1016/j.ijheatmasstransfer.2004.12.035
[48] Koo, J.; Kleinstreuer, C.: Laminar nanofluid flow in microheat-sinks, Int. J. Heat mass transfer 48, 2652-2661 (2005) · Zbl 1189.76122 · doi:10.1016/j.ijheatmasstransfer.2005.01.029
[49] Kumar, S.; Murthy, J. Y.: A numerical technique for computing effective thermal conductivity of fluid – particle mixtures (Part B), Num. heat transfer 47, 555-572 (2005)
[50] Maïga, S. E. B.; Palm, S. J.; Nguyen, C. T.; Roy, G.; Galanis, N.: Heat transfer enhancement by using nanofluids in forced convection flows, Int. J. Heat fluid flow 26, 530-546 (2005)
[51] Wen, D.; Ding, Y.: Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels, Microfluid nanofluid 1, 183-189 (2005)
[52] Wen, D.; Ding, Y.: Experimental investigation into pool boiling heat transfer of aqueous based \(\gamma \)-alumina nanofluids, J. nanoparticle res. 7, 265-274 (2005)
[53] Wen, D.; Ding, Y.: Formulation of nanofluids for natural convective heat transfer applications, Int. J. Heat fluid flow 26, 855-864 (2005)
[54] Xuan, Y.; Yao, Z.: Lattice Boltzmann model for nanofluids, Heat mass transfer 41, 199-205 (2005)
[55] Evans, W.; Fish, J.; Keblinski, P.: Role of Brownian motion hydrodynamics on nanofluid thermal conductivity, Appl. phys. Lett. 88, 093116 (2006)
[56] Jou, R. Y.; Tzeng, S. C.: Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures, Int. comm. Heat mass transfer 33, 727-736 (2006)
[57] Keblinski, P.; Thomin, J.: Hydrodynamic field around a Brownian particle, Phys. rev. E 73, 010502 (2006)
[58] Kim, J.; Choi, C. K.; Kang, Y. T.; Kim, M. G.: Effect of thermodiffusion nanoparticles on convective instability in binary nanofluids, Nanoscale microscale thermophys. Eng. 10, 29-39 (2006)
[59] Mansour, R. B.; Galanis, N.; Nguyen, C. T.: Effect of uncertainties in physical properties on forced convection heat transfer with nanofluids, Appl. thermal eng. 27, 240-249 (2006)
[60] Prasher, R.; Evans, W.; Meakin, P.; Fish, J.; Phelan, P.; Keblinski, P.: Effect of aggregation on thermal conduction in colloidal nanofluids, Appl. phys. Lett. 89, 143119 (2006) · Zbl 1137.82329
[61] Drew, D. A.; Passman, S. L.: Theory of multicomponent fluids, (1999) · Zbl 0919.76003
[62] Brinkman, H. C.: The viscosity of concentrated suspensions and solutions, J. chem. Phys. 20, 571-581 (1952)
[63] Kakaç, S.; Yener, Y.: Convective heat transfer, (1995)
[64] Trisaksri, S.; Wongwises, V.: Critical review of heat transfer characteristics of nanofluids, Renew. sustain. Energy rev. 11, No. 3, 512-523 (2007)
[65] Eastman, J. A.; Phillpot, S. R.; Choi, S. U. S.; Keblinski, P.: Thermal transport in nanofluids, Annu. rev. Mater. res. 34, 219-246 (2004) · Zbl 1111.76333
[66] J. Eapen, J. Li, S. Yip, Probing transport mechanisms in nanofluids by molecular dynamics simulations, in: Proceeding of the 18th National and 7th ISHMT – ASME Heat and Mass Transfer Conference, IIT Guwahati, India, 2006.
[67] J. Buongiorno, A non-homogeneous equilibrium model for convective transport in flowing nanofluids, in: The Proceedings of HT2005, San Francisco, CA, 2005.
[68] Wang, X. Q.; Mujumdar, A. S.: Heat transfer characteristics of nanofluids: a review, Int. J. Thermal sci. 46, 1-19 (2006)
[69] Daungthongsuk, W.; Wongwises, S.: A critical review of convective heat transfer of nanofluids, Renew. sustain. Energy rev. 11, 797-817 (2007)
[70] Palm, S. J.; Roy, G.; Nguyen, C. T.: Heat transfer enhancement with the use of nanofluids in radial flow cooling system with the use of nanofluids, Superlattices microstruct. 35, 497-511 (2004)
[71] Maïga, S. E. B.; Nguyen, C. T.; Galanis, N.; Roy, G.; Maré, T.; Coqueux, M.: Heat transfer enhancement in turbulent tube flow using al2o3 nanoparticle suspension, Int. J. Num. methods heat fluid flow 16, 275-292 (2006)
[72] Launder, B. E.; Spalding, D. B.: Lectures in mathematical models of turbulence, (1972) · Zbl 0288.76027
[73] Akbari, M.; Behzadmehr, A.: Developing mixed convection of a nanofluid in a horizontal tube with uniform heat flux, Int. J. Num. methods heat fluid flow 17, 566-586 (2007)
[74] Mirmasoumi, S.; Behzadmehr, A.: Numerical study of laminar mixed convection of a nanofluid in a horizontal tube using two-phase mixture model, Appl. thermal eng. 28, 717-727 (2008)
[75] Heris, S. Z.; Esfahany, M. N.; Etemad, G.: Numerical investigation of nanofluid laminar convection heat transfer through a circular tube, Num. heat transfer A 52, No. 11, 1043-1058 (2007)
[76] Behzadmehr, A.; Saffar-Avval, M.; Galanis, N.: Prediction of turbulent forced convection of a nanofluid in a tube with uniform heat flux using a two phase approach, Int. J. Heat fluid flow 28, 211-219 (2007)
[77] Manninen, M.; Taivassalo, V.; Kallio, S.: On the mixture model for multiphase flow, VTT publications 288, (1996)
[78] Schiller, L.; Naumann, A.; Drag, A.: Coefficeint correlation, Z. ver. Deutsch ing. 77, 318-320 (1935)
[79] Miller, A.; Gidaspow, D.: Dense vertical gas – solid flow in a pipe, Aiche J. 38, No. 11, 1801-1815 (1992)
[80] Mirmasoumi, S.; Behzadmehr, A.: Effect of nanoparticles mean diameter on mixed convection heat transfer of a nanofluid in a horizontal tube, Int. J. Heat fluid flow 29, 557-566 (2008)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.