# zbMATH — the first resource for mathematics

Positive solutions to singular multi-point dynamic eigenvalue problems with mixed derivatives. (English) Zbl 1168.34014
Summary: This paper considers a singular m-point dynamic eigenvalue problem on time scales $$\mathbb T$$:
$-(p(t)u^\Delta(t))^\nabla= \lambda f(t,u(t)), \quad t\in(0,1]\cap\mathbb T,$
$u(0)= \sum_{i=1}^{m-2} a_iu(\xi_i), \quad \gamma u(1)+\delta p(1)u^\Delta(1)= \sum_{i=1}^{m-2} b_ip(\xi_i)u^\Delta(\xi_i).$
We allow $$f(t,w)$$ to be singular at $$w=0$$ and $$t=0$$. By constructing the Green’s function and studying its positivity, eigenvalue intervals in which there exist positive solutions of the above problem are obtained by making use of the fixed point index theory.

##### MSC:
 34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations 34B16 Singular nonlinear boundary value problems for ordinary differential equations 34B10 Nonlocal and multipoint boundary value problems for ordinary differential equations 39A10 Additive difference equations
Full Text:
##### References:
  Anderson, D.; Ma, R., Second-order $$n$$-point eigenvalue problems on time scales, Adv. difference equ., 2006, (2006), Article ID 59572, 17 pages · Zbl 1133.39013  Asakawa, H., Nonresonant singular two-point boundary value problems, Nonlinear anal. TMA, 44, 791-809, (2001) · Zbl 0992.34011  Atici, F.M.; Guseinov, G.Sh., On green’s functions and positive solutions for boundary value problems on time scales, J. comput. appl. math., 141, 75-99, (2002) · Zbl 1007.34025  Bohner, M.; Luo, H., Singular second-order multipoint dynamic boundary value problems with mixed derivatives, Adv. difference equ., 2006, (2006), Article ID 54989, 15 pages · Zbl 1139.39024  Bohner, M.; Peterson, A., Dynamic equations on time scales: an introduction with applications, (2001), Birkhäuser Boston · Zbl 0978.39001  ()  DaCunha, J.J.; Davis, J.M.; Singh, P.K., Existence results for singular three-point boundary value problems on time scales, J. math. anal. appl., 295, 378-391, (2004) · Zbl 1069.34012  Eloe, P., Singular nonlinear multipoint conjugate boundary value problems, Commun. appl. anal., 2, 497-511, (1998) · Zbl 0903.34016  Gatica, J.A.; Oliker, V.; Waltman, P., Singular nonlinear boundary value problem for second-order ordinary differential equations, J. differential equations, 79, 62-78, (1989) · Zbl 0685.34017  Guo, D., Nonlinear functional analysis, (2001), Shandong Science and Technology Press Jinan, (in Chinese)  Henderson, J.; Yin, K.C., Focal boundary value problems for singular ordinary differential equations, Adv. nonlin. dyn., 5, 283-295, (1997) · Zbl 0974.34014  Henderson, J.; Kaufmann, E.R., Focal boundary value problems for singular difference equations, Comput. math. appl., 36, 1-10, (1998) · Zbl 0933.39039  Hilger, S., Analysis on measure chains — a unified approach to continuous and discrete calculus, Results math., 18, 18-56, (1990) · Zbl 0722.39001  S. Hilger, Ein Masskettenkalkuel mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universitaet Wuerzburg, 1988 · Zbl 0695.34001  Liang, J.; Xiao, T.; Hao, Z., Positive solutions of singular differential equations on measure chains, Comput. math. appl., 49, 651-663, (2005) · Zbl 1085.34019  Ma, R.; O’Regan, D., Solvability of singular second order $$m$$-point boundary value problems, J. math. anal. appl., 301, 124-134, (2005) · Zbl 1062.34018  Wong, P.J.Y.; Agarwal, R.P., On the existence of solutions of singular boundary value problems for higher order difference equations, Nonlinear anal. TMA, 28, 277-287, (1997) · Zbl 0861.39002  Zhang, Y., Positive solutions of singular sublinear emden – fowler boundary value problems, J. math. anal. appl., 185, 215-222, (1994) · Zbl 0823.34030  Zhang, Z.; Wang, J., The upper and lower solution method for a class of singular nonlinear second order three-point boundary value problems, J. comput. appl. math., 147, 41-52, (2002) · Zbl 1019.34021  Zhang, Z.; Wang, J., On existence and multiplicity of positive solutions to singular multi-point boundary value problems, J. math. anal. appl., 295, 502-512, (2004) · Zbl 1056.34018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.