×

zbMATH — the first resource for mathematics

On global Strichartz estimates for non-trapping metrics. (English) Zbl 1168.35005
Summary: We prove global Strichartz estimates (with spectral cutoff on the low frequencies) for non-trapping metric perturbations of the Schrödinger equation, posed on the Euclidean space.

MSC:
35B45 A priori estimates in context of PDEs
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J.-M. Bouclet, Distributions spectrales pour des opérateurs perturbés, PhD thesis, Nantes University, 2000
[2] Bouclet, J.-M., Spectral distributions for long range perturbations, J. funct. anal., 212, 431-471, (2004) · Zbl 1088.35041
[3] J.-M. Bouclet, Littlewood-Paley decompositions on manifolds with ends, preprint · Zbl 1198.42013
[4] Bouclet, J.-M.; Tzvetkov, N., Strichartz estimates for long range perturbations, Amer. J. math., 129, 6, 1565-1609, (2007) · Zbl 1154.35077
[5] Burq, N., Décroissance de l’énergie locale de l’équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta math., 1-29, (1998) · Zbl 0918.35081
[6] Burq, N.; Gérard, P.; Tzvetkov, N., Strichartz inequalities and the non-linear Schrödinger equation on compact manifolds, Amer. J. math., 126, 569-605, (2004) · Zbl 1067.58027
[7] N. Burq, Estimations de Strichartz pour des perturbations à longue portée de l’opérateur de Schrödinger, Séminaire X-EDP, Ecole Polytechnique, 2002 · Zbl 1292.35188
[8] Cotta-Ramusino, P.; Krüger, W.; Schrader, R., Ann. inst. H. Poincaré phys. théor., 31, 43-71, (1979)
[9] Doi, S., Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke math. J., 82, 679-706, (1996) · Zbl 0870.58101
[10] Erdogan, B.; Goldberg, M.; Schlag, W., Strichartz and smoothing estimates for Schrödinger operators with large magnetic potentials in \(\mathbb{R}^3\), available at · Zbl 1152.35021
[11] Gérard, C.; Martinez, A., Principe d’absorption limite pour LES opérateurs de Schrödinger à longue portée, C. R. acad. sci. Paris Sér. I math., 306, 121-123, (1988) · Zbl 0672.35013
[12] Gérard, C.; Martinez, A., Prolongement méromorphe de la matrice de scattering pour des problèmes à deux corps à longue portée, Ann. inst. H. Poincaré phys. théor., 51, 81-110, (1989) · Zbl 0711.35097
[13] Hassel, A.; Tao, T.; Wunsch, J., Sharp Strichartz estimates on non-trapping asymptotically conic manifolds, Amer. J. math., 128, 963-1024, (2006) · Zbl 1177.58019
[14] Hörmander, L., The analysis of linear partial differential operators III, (1985), Springer-Verlag
[15] Isozaki, H.; Kitada, H., Micro-local resolvent estimates for 2-body Schrödinger operators, J. funct. anal., J. funct. anal., 62, 336-300, (1985), Erratum · Zbl 0568.35022
[16] Isozaki, H.; Kitada, H., Modified wave operators with time independent modifiers, J. fac. sci. univ. Tokyo, sect. IA, 32, 77-104, (1985) · Zbl 0582.35036
[17] Jensen, A.; Mourre, E.; Perry, P., Multiple commutator estimates and resolvent smoothness, Ann. inst. H. Poincaré phys. théor., 41, 207-225, (1984) · Zbl 0561.47007
[18] Keel, M.; Tao, T., Endpoint Strichartz estimates, Amer. J. math., 120, 955-980, (1998) · Zbl 0922.35028
[19] Kerler, C., Perturbations of the Laplacian with variable coefficients in exterior domains and differentiability of the resolvent, Asymptot. anal., 19, 209-232, (1999) · Zbl 0942.35052
[20] Mourre, E., Absence of singular continuous spectrum for certain selfadjoint operators, Comm. math. phys., 78, 3, 391-408, (1981) · Zbl 0489.47010
[21] Mourre, E., Opérateurs conjugués et propriétés de propagation, Comm. math. phys., 91, 279-300, (1983) · Zbl 0543.47041
[22] Robbiano, L.; Zuily, C., Strichartz estimates for Schrödinger equations with variable coefficients, Mém. soc. math. fr. (N.S.), 101-102, (2005)
[23] Robert, D., Autour de l’approximation semi-classique, Progr. math., vol. 68, (1987), Birkhäuser · Zbl 0621.35001
[24] Robert, D., Asymptotique de la phase de diffusion à haute énergie pour LES perturbations du second ordre du laplacien, An. sci. école norm. sup., 25, 107-134, (1992) · Zbl 0801.35100
[25] Robert, D., Relative time delay for perturbations of elliptic operators and semi-classical asymptotics, J. funct. anal., 126, 36-82, (1994) · Zbl 0813.35073
[26] Rodnianski, I.; Tao, T., Long-time decay estimates for Schrödinger equations on manifolds, (), 223-253 · Zbl 1133.35022
[27] Sogge, C., Fourier integrals in classical analysis, Cambridge tracts in math., vol. 105, (1993), Cambridge Univ. Press · Zbl 0783.35001
[28] Staffilani, G.; Tataru, D., Strichartz estimates for a Schrödinger operator with non-smooth coefficients, Comm. partial differential equations, 27, 1337-1372, (2002) · Zbl 1010.35015
[29] D. Tataru, Parametrices and dispersive estimates for Schrödinger operators with variable coefficients, preprint; see http://math.berkeley.edu/ tataru/nlw.html · Zbl 1159.35315
[30] Taylor, M.E., Partial differential equation III. nonlinear equations, (1996), Springer-Verlag
[31] Vodev, G., Dispersive estimates of solutions to the Schrödinger equation, Ann. H. Poincaré, 6, 1179-1196, (2005) · Zbl 1084.81031
[32] Wang, X.P., Time decay of scattering solutions and classical trajectories, Ann. inst. H. Poincaré phys. théor., 47, 25-37, (1987) · Zbl 0641.35018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.