×

zbMATH — the first resource for mathematics

On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. (English) Zbl 1168.35035
Summary: We improve and extend some known regularity criterion of the weak solution for the 3D viscous magneto-hydrodynamics equations by means of the Fourier localization technique and Bony’s para-product decomposition.

MSC:
35Q35 PDEs in connection with fluid mechanics
35D10 Regularity of generalized solutions of PDE (MSC2000)
76W05 Magnetohydrodynamics and electrohydrodynamics
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Beirão da Veiga H.: A new regularity class for the Navier-Stokes equations in \({\mathbb{R}^n}\) . Chinese Ann. of Math. 16B, 407–412 (1995) · Zbl 0837.35111
[2] Bony J.-M.: Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. École Norm. Sup. 14, 209–246 (1981)
[3] Chen Q., Zhang Z.: Space-time estimates in the Besov spaces and the Navier-Stokes equations. Meth. Appl. Anal. 13, 107–122 (2006) · Zbl 1185.35160
[4] Chen Q., Miao C., Zhang Z.: The Beale-Kato-Majda criterion to the 3D Magneto-hydrodynamics equations. Commun. Math. Phys. 275, 861–872 (2007) · Zbl 1138.76066 · doi:10.1007/s00220-007-0319-y
[5] Chemin, J.-Y.: Perfect Incompressible Fluids. New York: Oxford University Press, 1998
[6] Cheskidov, A., Shvydkoy, R.: On the regularity of weak solutions of the 3D Navier-Stokes equations in \({B^{-1}_{\infty,\infty}}\) . http://arXiv.org/list/0708.3067v2 , 2007 · Zbl 1186.35137
[7] Constantin P., Fefferman C.: Direction of vorticity and the problem of global regularity for the Navier-Stokes equations. Indiana Univ. Math. J. 42, 775–788 (1993) · Zbl 0837.35113 · doi:10.1512/iumj.1993.42.42034
[8] Duvaut G., Lions J.-L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ratl. Mech. Anal. 46, 241–279 (1972) · Zbl 0264.73027 · doi:10.1007/BF00250512
[9] Escauriaza L., Seregin G., Sverák V.: L 3,solutions to the Navier-Stokes equations and backward uniqueness. Russ. Math. Surv. 58, 211–250 (2003) · Zbl 1064.35134 · doi:10.1070/RM2003v058n02ABEH000609
[10] Fujita H., Kato T.: On the Navier-Stokes initial value problem I. Archiv. Rat. Mech. Anal. 16, 269–315 (1964) · Zbl 0126.42301 · doi:10.1007/BF00276188
[11] Giga Y.: Solutions for semilinear parabolic equations in L p and regularity of weak solutions of the Navier-Stokes system. J. Differ. Eq. 62, 186–212 (1986) · Zbl 0577.35058 · doi:10.1016/0022-0396(86)90096-3
[12] He C., Xin Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Diff. Eqs. 213, 235–254 (2005) · Zbl 1072.35154 · doi:10.1016/j.jde.2004.07.002
[13] Kato T.: Nonstationary flows of viscous and ideal fluids in \({\mathbb{R}^3}\) . J. Funct. Anal. 9, 296–305 (1972) · Zbl 0229.76018 · doi:10.1016/0022-1236(72)90003-1
[14] Kozono H., Ogawa T., Taniuchi Y.: The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math. Z. 242, 251–278 (2002) · Zbl 1055.35087 · doi:10.1007/s002090100332
[15] Politano H., Pouquet A., Sulem P.L.: Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence. Phys. Plasmas 2, 2931–2939 (1995) · Zbl 0875.76699 · doi:10.1063/1.871473
[16] Serrin J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rat. Mech. Anal. 9, 187–195 (1962) · Zbl 0106.18302 · doi:10.1007/BF00253344
[17] Sermange M., Teman R.: Some mathematical questions related to the MHD equations. Comm. Pure Appl. Math. 36, 635–664 (1983) · Zbl 0524.76099 · doi:10.1002/cpa.3160360506
[18] Triebel, H.: Theory of Function Spaces. Monograph in Mathematics, Vol. 78, Basel: Birkhauser Verlag, 1983 · Zbl 0546.46028
[19] Von Wahl W.: Regularity of weak solutions of the Navier-Stokes equations. Proc. Symp. Pure Appl. Math. 45, 497–503 (1986) · Zbl 0604.35066
[20] Wu J.: Bounds and new approaches for the 3D MHD equations. J. Nonlinear Sci. 12, 395–413 (2002) · Zbl 1029.76062 · doi:10.1007/s00332-002-0486-0
[21] Wu J.: Regularity results for weak solutions of the 3D MHD equations. Discrete. Contin. Dynam. Syst. 10, 543–556 (2004) · Zbl 1055.76062 · doi:10.3934/dcds.2004.10.543
[22] Wu J.: Generalized MHD equations. J. Differ. Eqs. 195, 284–312 (2003) · Zbl 1057.35040 · doi:10.1016/j.jde.2003.07.007
[23] Wu J.: Regularity criteria for the generalized MHD equations. Comm. PDE 33(2), 285–306 (2008) · Zbl 1134.76068 · doi:10.1080/03605300701382530
[24] Zhou Y.: Remarks on regularities for the 3D MHD equations. Discrete. Contin. Dynam. Syst. 12, 881–886 (2005) · Zbl 1068.35117 · doi:10.3934/dcds.2005.12.881
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.