×

An effective modification of He’s variational iteration method. (English) Zbl 1168.45301

Summary: It is well known that one of the advantages of He’s variational iteration method is the free choice of initial approximation. Therefore, in this paper, we use this advantage to propose a reliable modification of He’s variational iteration method. Indeed, this constructs an initial trial-function without unknown parameters, which is called the modified variational iteration method. Some of the nonlinear and linear equations are examined by the modified method to illustrate the effectiveness and convenience of this method, and in all cases, the modified technique performed excellently. The results reveal that the proposed method is very effective and simple and gives exact solutions. The modification could lead to a promising approach for many applications in applied sciences.

MSC:

45J05 Integro-ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] He, J.H., Variational iteration method— a kind of non-linear analytical technique: some examples, Internat. J. non-linear mech., 34, 699-708, (1999) · Zbl 1342.34005
[2] He, J.H., A new approach to nonlinear partial differential equations, Commun. nonlinear sci. numer. simul., 2, 230-235, (1997)
[3] He, J.H., Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. methods appl. mech. engrg., 167, 57-68, (1998) · Zbl 0942.76077
[4] He, J.H., Approximate solution of nonlinear differential equations with convolution product nonlinearities, Comput. methods appl. mech. engrg., 167, 69-73, (1998) · Zbl 0932.65143
[5] He, J.H., Variational iteration method for delay differential equations, Commun. nonlinear sci. numer. simul., 2, 235-236, (1997)
[6] He, J.H., Variational iteration method for autonomous ordinary differential systems, Appl. math. comput., 114, 115-123, (2000) · Zbl 1027.34009
[7] He, J.H., Variational principle for some nonlinear partial differential equations with variable coefficients, Chaos solitons fractals, 19, 847-851, (2004) · Zbl 1135.35303
[8] Wang, Sh.Q.; He, J.H., Variational iteration method for solving integro-differential equations, Phys. lett. A, 367, 188-191, (2007) · Zbl 1209.65152
[9] He, J.H.; Wu, X.H., Construction of solitary solution and compaction-like solution by variational iteration method, Chaos solitons fractals, 29, 108-113, (2006) · Zbl 1147.35338
[10] M. Inc, Exact special solutions for the nonlinear dispersive K (2, 2, 1) and K (3, 3, 1) equations by He’s variational iteration method, Nonlinear Anal. doi:10.1016/j.na.2007.05.046 · Zbl 1159.35413
[11] Abdou, M.A.; Soliman, A.A., Variational iteration method for solving burger’s and coupled burger’s equations, J. comput. appl. math., 181, 245-251, (2005) · Zbl 1072.65127
[12] Abbasbandy, S., An approximation solution of a nonlinear equation with riemann – liouville’s fractional derivatives by he’s variational iteration method, J. comput. appl. math., 207, 53-58, (2007) · Zbl 1120.65133
[13] Wazwaz, A.M., The variational iteration method for exact solutions of Laplace equation, Phys. lett. A, 363, 260-262, (2007) · Zbl 1197.65204
[14] Momani, S.; Abuasad, S., Application of he’s variational iteration method to Helmholtz equation, Chaos solitons fractals, 27, 1119-1123, (2006) · Zbl 1086.65113
[15] Odibat, Z.M.; Momani, S., Application of variational iteration method to nonlinear differential equations of fractional order, Internat. J. non-linear sci. numer. simul., 7, 27-34, (2006)
[16] A.M. Wazwaz, The variational iteration method for rational solutions for KdV, K (2, 2), Burgers, and cubic Boussinesq equations, J. Comput. Appl. Math. doi:10.1016/j.cam.2006.07.010 · Zbl 1119.65102
[17] Tatari, M.; Dehghan, M., He’s variational iteration method for computing a control parameter in a semi-linear inverse parabolic equation, Chaos solitons fractals, 33, 671-677, (2007) · Zbl 1131.65084
[18] He, J.H., Variational approach to the Thomas. Fermi equation, Appl. math. comput., 143, 533-535, (2003) · Zbl 1022.65083
[19] He, J.H., Variational approach to the sixth-order boundary value problems, Appl. math. comput., 143, 537-538, (2003) · Zbl 1025.65043
[20] He, J.H., Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos solitons fractals, 19, 847-851, (2004) · Zbl 1135.35303
[21] He, J.H., Variational approach to (2+1)-dimensional dispersive long water equations, Phys. lett. A, 335, 182-184, (2005) · Zbl 1123.37319
[22] J.H. He, Variational iteration method— Some resent results and new interpretations, J. Comput. Appl. Math. doi:10.1016/j.cam.2006.07.009
[23] Abbasbandy, S., A new application of he’s variational iteration method for quadratic Riccati differential equation by using adomian’s polynomials, J. comput. appl. math., 207, 59-63, (2007) · Zbl 1120.65083
[24] E. Yusufoglu, A. Bekir, Numerical simulation of equal-width wave equation, Comput. Math. Appl. doi:10.1016/j.camwa.2006.12.080 · Zbl 1141.65389
[25] Sweilam, N.H., Fourth order integro-differential equations using variational iteration method, Comput. math. appl., 54, 1086-1091, (2007) · Zbl 1141.65399
[26] J.H. He, Variational iteration method: New development and applications, Comput. Math. Appl. doi:10.1016/j.camwa.2006.12.083 · Zbl 1141.65372
[27] Tatari, M.; Dehghan, M., On the convergence of he’s variational iteration method, J. comput. appl. math., 207, 121-128, (2007) · Zbl 1120.65112
[28] Wazwaz, A.M., A comparison between the variational iteration method and Adomian decomposition method, J. comput. appl. math., 207, 129-136, (2007) · Zbl 1119.65103
[29] Abassy, T.A.; El-Tawil, M.A.; El Zoheiry, H., Solving nonlinear partial differential equations using the modified variational iteration-Padé technique, J. comput. appl. math., 207, 73-91, (2007) · Zbl 1119.65095
[30] Abbasbandy, S., A new application of he’s variational iteration method for quadratic Riccati differential equation by using adomian’s polynomials, J. comput. appl. math., 207, 59-63, (2007) · Zbl 1120.65083
[31] Bildik, N.; Konuralp, A., The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, Internat. J. non-linear sci. numer. simul., 7, 65-70, (2006)
[32] Abassy, T.A.; El-Tawil, M.A.; El Zoheiry, H., Toward a modified variational iteration method, J. comput. appl. math., 207, 137-147, (2007) · Zbl 1119.65096
[33] L. Xu, Variational iteration method for solving integral equations, Comput. Math. Appl. doi:10.1016/j.camwa.2006.12.053 · Zbl 1141.65400
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.