On univariate extreme value statistics and the estimation of reinsurance premiums. (English) Zbl 1168.62392

Summary: We consider the estimation of insurance premiums for excess-of-loss reinsurance policies in excess of a high retention level. Special attention is paid to Wang’s premium principle and heavy-tailed distributions, for which estimators of small exceedance probabilities allow the estimation of reinsurance premiums. Next to the construction of estimators, we also consider the corresponding asymptotic results and illustrate the finite sample behavior through a real insurance application as well as simulations.


62P05 Applications of statistics to actuarial sciences and financial mathematics
62G32 Statistics of extreme values; tail inference
Full Text: DOI


[1] Balkema, A.; de Haan, L., Residual life time at great age, Annals of probability, 2, 792-804, (1974) · Zbl 0295.60014
[2] Beirlant, J.; Dierckx, G.; Goegebeur, Y.; Matthys, G., Tail index estimation and an exponential regression model, Extremes, 2, 2, 177-200, (1999) · Zbl 0947.62034
[3] Beirlant, J.; Goegebeur, Y.; Segers, J.; Teugels, J., Statistics of extremes—theory and applications, (2004), Wiley
[4] Beirlant, J.; Matthys, G.; Dierckx, G., Heavy-tailed distributions and rating, ASTIN bulletin, 31, 41-62, (2001)
[5] Bingham, N.; Goldie, C.; Teugels, J., Regular variation, (1987), Cambridge University Press · Zbl 0617.26001
[6] Chew, S.; Karni, E.; Safra, Z., Risk aversion in the theory of expected utility with rank dependent probabilities, Journal of economic theory, 42, 370-381, (1987) · Zbl 0632.90007
[7] Davis, R.; Resnick, S., Tail estimates motivated by extreme value theory, Annals of statistics, 12, 1467-1487, (1984) · Zbl 0555.62035
[8] Dekkers, A.; Einmahl, J.; de Haan, L., A moment estimator for the index of an extreme-value distribution, Annals of statistics, 17, 1833-1855, (1989) · Zbl 0701.62029
[9] Denuit, M.; Charpentier, A., Mathématiques de l’assurance non-vie. tome I: principes fondamentaux de théorie du risque, Economica, (2004)
[10] Ferreira, A., Optimal asymptotic estimation of small exceedance probabilities, Journal of statistical planning and inference, 104, 83-102, (2002) · Zbl 0988.62029
[11] Ferreira, A., de Haan, L., Peng, L., 1999. Adaptive estimators for the endpoint and high quantiles of a probability distribution. Technical Report, EURANDOM, Technical University Eindhoven.
[12] Feuerverger, A.; Hall, P., Estimating a tail exponent by modelling departure from a Pareto distribution, Annals of statistics, 27, 760-781, (1999) · Zbl 0942.62059
[13] Fisher, R.; Tippett, L., On the estimation of the frequency distribution of the largest or smallest member of a sample, Proceedings of the Cambridge philosophical society, 24, 180-190, (1928) · JFM 54.0560.05
[14] Haeusler, E.; Teugels, J., On asymptotic normality of hill’s estimator for the exponent of regular variation, Annals of statistics, 13, 743-756, (1985) · Zbl 0606.62019
[15] Hall, P.; Weissman, I., On the estimation of extreme tail probabilities, Annals of statistics, 25, 1311-1326, (1997) · Zbl 0880.62036
[16] Hill, B., A simple general approach to inference about the tail of a distribution, Annals of statistics, 3, 1163-1174, (1975) · Zbl 0323.62033
[17] Hürlimann, W., On stop-loss order and the distortion pricing principle, ASTIN bulletin, 28, 134-199, (1998) · Zbl 1168.91414
[18] Matthys, G.; Beirlant, J., Estimating the extreme value index and high quantiles with exponential regression models, Statistica sinica, 13, 3, 853-880, (2003) · Zbl 1028.62038
[19] Matthys, G.; Delafosse, E.; Guillou, A.; Beirlant, J., Estimating catastrophic quantile levels for heavy-tailed distributions, Insurance: mathematics and economics, 34, 517-537, (2004) · Zbl 1188.91237
[20] Pickands, J., Statistical inference using extreme order statistics, Annals of statistics, 3, 119-131, (1975) · Zbl 0312.62038
[21] Smith, R., Estimating tails of probability distributions, Annals of statistics, 15, 1174-1207, (1987) · Zbl 0642.62022
[22] Vandewalle, B., 2004. Some robust and semi-parametric methods in extreme value theory. Ph.D. Thesis. Department of Mathematics, Catholic University, Leuven.
[23] Wang, S., Premium calculation by transforming the layer premium density, ASTIN bulletin, 26, 71-92, (1996)
[24] Wang, S.; Young, V., Risk-adjusted credibility premiums using distorted probabilities, Scandinavian actuarial journal, 98, 143-165, (1998) · Zbl 1043.91512
[25] Weissman, I., Estimation of parameters and large quantiles based on the k largest observations, Journal of the American statistical association, 73, 812-815, (1978) · Zbl 0397.62034
[26] Yaari, M., The dual theory of choice under risk, Econometrica, 55, 95-115, (1987) · Zbl 0616.90005
[27] Young, V., Premium principles. encyclopedia of actuarial science, (2004), Wiley, pp. 1322-1331
[28] Zajdenweber, D., Extreme values in business interruption insurance, Journal of risk and insurance, 63, 95-110, (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.