×

Consistent derivation of the constitutive algorithm for plane stress isotropic plasticity. II: Computational issues. (English) Zbl 1168.74321

Summary: The implementation of the projected algorithm and of the consistent tangent tensor for general isotropic three-invariant elastoplastic models under plane stress conditions discussed in Part I of this paper [ibid. 46, No. 1, 92–124 (2009; Zbl 1168.74320)] is addressed. The connections between the general three-dimensional case and the plane stress problem are analyzed in detail and an algorithmic treatment taking full advantage of the isotropic properties of the model is presented. In particular, intrinsic (matrix-free) expressions are provided for all steps of the stress computation scheme that allow one to carry out the numerical implementation in a way that is completely independent from the matrix representations. The numerical performances of the present solution scheme are evaluated through representative numerical examples.

MSC:

74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
74S05 Finite element methods applied to problems in solid mechanics

Citations:

Zbl 1168.74320
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bigoni, D.; Piccolroaz, A.: Yield criteria for quasibrittle and frictional materials, International journal of solids and structures 41, No. 11 – 12, 2855-2878 (2004) · Zbl 1070.74009 · doi:10.1016/j.ijsolstr.2003.12.024
[2] Chen, W. F.; Saleeb, A. F.: Constitutive equations for engineering materials, (1982) · Zbl 0595.73002
[3] Fuschi, P.; Dutko, M.; Peric, D.; Owen, D. R. J.: On numerical integration of the five parameter model for concrete, Computers & structures 53, 825-838 (1994)
[4] Jetteur, P.: Implicit integration algorithm for elastoplasticity in plane stress analysis, Engineering computations 3, 251-253 (1986)
[5] Lee, S. W.; Yoon, J. W.; Yang, D. J.: A stress integration algorithm for plane stress elastoplasticity and its application to explicit finite element analysis of sheet metal forming processes, Computers & structures 66, 301-311 (1998) · Zbl 0918.73248 · doi:10.1016/S0045-7949(97)00051-5
[6] Lourenço, P. B.; De Borst, R.; Rots, J. G.: A plane stress softening plasticity model for orthotropic materials, International journal for numerical methods in engineering 40, 4033-4057 (1997) · Zbl 0897.73015 · doi:10.1002/(SICI)1097-0207(19971115)40:21<4033::AID-NME248>3.0.CO;2-0
[7] Lubliner, J.: Plasticity theory, (1990) · Zbl 0745.73006
[8] Montáns, F. J.: Implicit plane stress algorithm for multilayer J2 plasticity using the Prager-ziegler translation rule, International journal for numerical methods in engineering 59, 409-418 (2004) · Zbl 1047.74062 · doi:10.1002/nme.885
[9] Palazzo, V.; Rosati, L.; Valoroso, N.: Solution procedures for J3 plasticity and viscoplasticity, Computer methods in applied mechanics and engineering 191, No. 8, 903-939 (2001) · Zbl 1030.74050 · doi:10.1016/S0045-7825(01)00287-0
[10] Rivlin, R. S.: Further remarks on the stress-deformation relations for isotropic materials, Journal of rational mechanics and analysis 4, 681-701 (1955) · Zbl 0064.42101
[11] Rosati, L.; Valoroso, N.: A return map algorithm for general isotropic elasto/visco-plastic materials in principal space, International journal for numerical methods in engineering 60, No. 2, 461-498 (2004) · Zbl 1060.74520 · doi:10.1002/nme.970
[12] Schreyer, H. L.; Kulak, R. F.; Kramer, J. M.: Accurate numerical solutions for elastic – plastic models, Journal of pressure vessel technology 101, 226-234 (1979)
[13] Simo, J. C.: Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory, Computer methods in applied mechanics and engineering 99, 61-112 (1992) · Zbl 0764.73089 · doi:10.1016/0045-7825(92)90123-2
[14] Simo, J. C.; Kennedy, J. G.: On a stress resultant geometrically exact shell model. Part V. Nonlinear plasticity: formulation and integration algorithms, Computer methods in applied mechanics and engineering 96, 133-171 (1992) · Zbl 0754.73042 · doi:10.1016/0045-7825(92)90129-8
[15] Simo, J. C.; Taylor, R. L.: A return mapping algorithm for plane stress elastoplasticity, International journal for numerical methods in engineering 22, 649-670 (1986) · Zbl 0585.73059 · doi:10.1002/nme.1620220310
[16] Taylor, R.L. (2002). FEAP – User Manual. University of California at Berkekey. Available from: &lt;http://www.ce.berkeley.edu/ rlt/&gt;.
[17] Truesdell, C.; Noll, W.: The non-linear field theories of mechanics, Handbuch der physik band III/3 (1965) · Zbl 0779.73004
[18] Valoroso, N.; Rosati, L.: Consistent derivation of the constitutive algorithm for plane stress isotropic plasticity. Part I: Theoretical formulation, International journal of solids and structures. 46, 74-91 (2008) · Zbl 1168.74320 · doi:10.1016/j.ijsolstr.2008.08.012
[19] Valoroso, N., Rosati, L., in preparation. Matrix-free implementation of isotropic tensor functions in classical plasticity. · Zbl 1181.74016
[20] Willam, K.J., Warnke, E.P., 1974. Constitutive models for triaxial behaviour of concrete. International Association for Bridge and Structural Engineering: seminar on concrete structures subject to triaxial stresses. Paper III-01.
[21] Zienkiewicz, O. C.; Taylor, R. L.: The finite element method, vol. II: solid mechanics, (2000) · Zbl 0991.74003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.