×

zbMATH — the first resource for mathematics

Paradox of a particle’s trajectory moving on a string. (English) Zbl 1168.74383
Summary: This paper deals with the paradoxical properties of the solution of string vibration under a moving mass. The solutions published to date are not simple enough and cannot be applied to investigations in the entire range of mass speeds, including the overcritical range. We propose a formulation of the problem that allows us to reduce the problem to a second-order matrix differential equation. Its solution is characteristic of all features of the critical, subcritical, and overcritical motion. Results exhibit discontinuity of the mass trajectory at the end support point, which has not been previously reported in the literature. The closed solution in the case of a massless string is analyzed and the discontinuity is proved. Numerical results obtained for an inertial string demonstrate similar features. Small vibrations are analyzed, which is why the effect discussed in the paper is of purely mathematical interest. However, the phenomenon results in complexity in discrete solutions.

MSC:
74K05 Strings
74H45 Vibrations in dynamical problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Panovko, J.: Historical outline of the theory of dynamic influence of moving load (in Russian). Eng. Acad. Air Forces 17, 8–38 (1948)
[2] Jakushev, N.Z.: Certain problems of dynamics of the beam under moving load (in Russian). Kazan Univ. 12, 199–220 (1974)
[3] Dmitrijev, A.S.: The analysis of solutions of problems with lateral oscillatory vibrations of various beam structures under the motion of non spring point load (in Russian). Mach. Dyn. Problems 24, 18– (1985)
[4] Saller, H.: Einfluss bewegter Last auf Eisenbahnoberbau und Brücken. Kreidels Verlag, Berlin und Wiesbaden (1921)
[5] Inglis, C.E.: A Mathematical Treatise on Vibrations in Railway Bridges. Cambridge University Press, London (1934) · JFM 60.1373.01
[6] Schallenkamp, A.: Schwingungen von Trägern bei bewegten Lasten. Arch. Appl. Mech. (Ingenieur Archiv) 8(3), 182–198 (1937) · JFM 63.1309.01
[7] Bolotin, W.W.: On the influence of moving load on bridges (in Russian). Rep. Moscow Univ. Railway Transp. MIIT 74, 269–296 (1950)
[8] Bolotin, W.W.: Problems of bridge vibration under the action of the moving load (in Russian). Izvestiya AN SSSR, Mekh. Mashinostroenie 4, 109–115 (1961)
[9] Morgaevskii, A.B.: Critical velocities calculation in the case of a beam under moving load (in Russian). Mekh. Mashinostroenie, Izvestiya AN SSSR, OTN 3, 176–178 (1959)
[10] Szcześniak, W.: Inertial moving loads on beams (in Polish). Scientific Reports, Technical University of Warsaw, Civil Engineering 112 (1990)
[11] Ting, E.C., Genin, J., Ginsberg, J.H.: A general algorithm for moving mass problems. J. Sound Vib. 33(1), 49–58 (1974) · Zbl 0276.73031 · doi:10.1016/S0022-460X(74)80072-6
[12] Smith, C.E.: Motion of a stretched string carrying a moving mass particle. J. Appl. Mech. 31(1), 29–37 (1964) · Zbl 0151.39304
[13] Fryba, L.: Vibrations of solids and structures under moving loads. Academia, Prague (1972) · Zbl 0301.73015
[14] Wu, J.-J.: Dynamic analysis of an inclined beam due to moving loads. J. Sound Vib. 288, 107–131 (2005) · Zbl 1243.74097 · doi:10.1016/j.jsv.2004.12.020
[15] Metrikine, A.V., Verichev, S.N.: Instability of vibration of a moving oscillator on a flexibly supported Timoshenko beam. Arch. Appl. Mech. 71(9), 613–624 (2001) · Zbl 1017.74031 · doi:10.1007/s004190100177
[16] Pesterev, A.V., Bergman, L.A., Tan, C.A., Tsao, T.-C., Yang, B.: On asymptotics of thesolution of the moving oscillator problem. J. Sound Vib. 260, 519–536 (2003) · doi:10.1016/S0022-460X(02)00953-7
[17] Biondi, B., Muscolino, G.: New improved series expansion for solving the moving oscillator problem. J. Sound Vib. 281, 99–117 (2005) · doi:10.1016/j.jsv.2004.01.018
[18] Andrianov, I.V., Awrejcewicz, J.: Dynamics of a string moving with time-varying speed. J. Sound Vib. 292, 935–940 (2006) · Zbl 1243.74078 · doi:10.1016/j.jsv.2005.09.025
[19] Michaltsos, G.T.: Dynamic behaviour of a single-span beam subjected to loads moving with variable speeds. J. Sound Vibr. 258(2), 359–372 (2002) · doi:10.1006/jsvi.2002.5141
[20] Gavrilov, S.N., Indeitsev, D.A.: The evolution of a trapped mode of oscillations in a string on an elastic foundation G moving inertial inclusion system. J. Appl. Math. Mech. 66(5), 852–833 (2002) · Zbl 1094.74583 · doi:10.1016/S0021-8928(02)90013-4
[21] Gavrilov, S.N.: The effective mass of a point mass moving along a string on a Winkler foundation. J. Appl. Math. Mech. 70(4), 641–649 (2006) · Zbl 1126.70352 · doi:10.1016/j.jappmathmech.2006.09.009
[22] Rodeman, R., Longcope, D.B., Shampine, L.F.: Response of a string to an accelerating mass. J. Appl. Mech. 98(4), 675–680 (1976) · Zbl 0355.73047 · doi:10.1115/1.3423954
[23] Kaplunov, Y.D.: The torsional oscillations of a rod on a deformable foundation under the action of a moving inertial load (in Russian). Izv Akad Nauk SSSR, MTT 6, 174–177 (1986)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.