Asymptotic suction profiles for the Blasius and Sakiadis flow with constant and variable fluid properties. (English) Zbl 1168.76314

Summary: A theoretical study of the effect of variable fluid properties on the Blasius and Sakiadis flow with uniform suction at the asymptotic state is presented in this paper. The investigation concerns air and water taking into account the variation of their physical properties with temperature. Velocity and temperature profiles are presented as well as values of the displacement thickness, momentum thickness, shape factor, wall shear stress and Nusselt number for different temperatures of the plate and the ambient fluid. It is found that the nondimensional displacement thickness, momentum thickness, shape factor, absolute wall shear stress and Nusselt number are identical in both Blasius and Sakiadib flow at the asymptotic state for a fluid with constant properties. The same is valid for any fluid with variable properties if the temperature boundary conditions are the same in Blasius and Sakiadis flow.


76D10 Boundary-layer theory, separation and reattachment, higher-order effects
76M20 Finite difference methods applied to problems in fluid mechanics
Full Text: DOI


[1] Acharya S., Murthy J.: Foreword to the special issue on computational heat transfer. ASME J. Heat Transf. 129, 405–406 (2007)
[2] Anderson D., Tannehill J., Pletcher R.: Computational Fluid Mechanics and Heat Transfer. McGraw-Hiil Company, Mew York (1984) · Zbl 0569.76001
[3] Aydin O., Kaya A.: Laminar boundary layer flow over a horizontal permeable flat plate. Appl. Math. Comput. 161, 229–240 (2005) · Zbl 1102.76018
[4] Bejan A.: Convection Heat Transfer. Wiley, New York (1995) · Zbl 0599.76097
[5] Blasius H.: Grenzschichten in Flussigkeiten mit kleiner Reibung. Z. Math. Phys. 56, 1–37 (1908) · JFM 39.0803.02
[6] Braslow, A.L.: A history of suction-type laminar-flow control with emphasis on flight research, NASA History Division, Monographs in Aerospace History, Number 13, Washington, DC 20546 (1999)
[7] Fox V.G., Erickson L.E., Fan L.T.: Methods for solving the boundary layer equations for moving continuous flat surfaces with suction and injection. AIChe J. 14, 726–736 (1969)
[8] Iglisch, R.: Exakte Berechnung der laminaren Reibungsschicht an der längsangeströmten ebenen Platte mit homogener Absaugung. Schriften d. dt. Akad. Luftfahrtforschung, 8B, Nr. 1, translation: NACA-RM-1205 (1949) (1944)
[9] Kakac S., Yener Y.: Convective Heat Transfer, 2nd edn. CRC Press, Boca Raton (1995)
[10] Oosthuizen P., Naylor D.: Introduction to Convective Heat Transfer Analysis. McGraw-Hill, New York (1999) · Zbl 0825.76772
[11] Pantokratoras A.: Laminar free-convection over a vertical isothermal plate with uniform blowing or suction in water with variable physical properties. Int. J. Heat Mass Transf. 45, 963–977 (2002) · Zbl 1121.76402
[12] Pantokratoras A.: The Blasius, Sakiadis and Blasius–Sakiadis flow with uniform suction. A unified approach. Prog. Comput. Fluid Dyn. 7, 482–486 (2007)
[13] Patankar S.V.: Numerical Heat Transfer and Fluid Flow. McGraw-Hill Book Company, New York (1980) · Zbl 0521.76003
[14] Sakiadis B.C.: Boundary layer behavior on continuous solid surfaces: The boundary layer on a continuous flat surface. AIChE J. 7, 221–225 (1961)
[15] Schlichting H., Gersten K.: Boundary layer theory, 9th edn. Springer, Berlin (2003) · Zbl 0880.76002
[16] Ulrich, A.: Theoretische Untersuchungen über die Widerstandsersparnis durch Laminarhaltung mit Absaugung, Aerodynamisches Institut der Technischen Hochschule Braunschweig, Bericht Nr. 44/8, translation: NACA Technical Memorandum 1121 (1947) (1944)
[17] Watanabe T.: Thermal boundary layers over a wedge with uniform suction or injection in forced flow. Acta Mech. 83, 119–126 (1990)
[18] White F.: Viscous Fluid Flow, 2nd edn. McGraw-Hill, New York (1991)
[19] White F.: Viscous Fluid Flow,3rd edn. McGraw-Hill, New York (2006)
[20] Zografos A.I., Martin W.A., Sunderland J.E.: Equations of properties as a function of temperature for seven fluids. Comp. Methods Appl. Mech. Eng. 61, 177–187 (1987) · Zbl 0597.76010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.