×

zbMATH — the first resource for mathematics

A connectivity-preserving flocking algorithm for multi-agent systems based only on position measurements. (English) Zbl 1168.93311
Summary: Most existing flocking algorithms rely on information about both relative position and relative velocity among neighbouring agents. In this article, we investigate the flocking problem with only position measurements. We propose a provably-stable flocking algorithm, in which an output vector is produced by distributed filters based on position information alone but not velocity information. Under the assumption that the initial interactive network is connected, the flocking algorithm not only can steer a group of agents to a stable flocking motion, but also can preserve the connectivity of the interactive network during the dynamical evolution. Moreover, we investigate the flocking algorithm with a virtual leader and show that all agents can asymptotically attain a desired velocity even if only one agent in the team has access to the information of the virtual leader. We finally show some numerical simulations to illustrate the theoretical results.

MSC:
93A14 Decentralized systems
93C10 Nonlinear systems in control theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chang DE, Proceedings of IEEE Conference on Decision and Control pp 539– (2003)
[2] DOI: 10.1038/nature03236 · doi:10.1038/nature03236
[3] DOI: 10.1109/TAC.2003.809765 · Zbl 1365.92143 · doi:10.1109/TAC.2003.809765
[4] DOI: 10.1109/TSMCB.2003.817077 · doi:10.1109/TSMCB.2003.817077
[5] Godsil C, Algebraic Graph Theory Vol. 207 of Graduate Texts in Mathematics (2001)
[6] Horn RA, Matrix Analysis (1987)
[7] Hong Y, Automatica 42 pp 1175– (2006) · Zbl 1117.93300 · doi:10.1016/j.automatica.2006.02.013
[8] DOI: 10.1109/TAC.2003.812781 · Zbl 1364.93514 · doi:10.1109/TAC.2003.812781
[9] DOI: 10.1109/TRO.2007.900638 · doi:10.1109/TRO.2007.900638
[10] Khalil HK, Nonlinear Systems, 3. ed. (2002)
[11] DOI: 10.1177/027836498600500106 · doi:10.1177/027836498600500106
[12] DOI: 10.1016/S0005-1098(02)00025-0 · Zbl 1032.93553 · doi:10.1016/S0005-1098(02)00025-0
[13] Leonard N, Proceedings of IEEE Conference on Decision and Control pp 2968– (2003)
[14] DOI: 10.1109/TAC.2002.806657 · Zbl 1364.93474 · doi:10.1109/TAC.2002.806657
[15] Liu Y, IEEE Transactions on Automatic Control 48 pp 1848– (2003) · Zbl 1364.93684 · doi:10.1109/TAC.2003.817942
[16] Lizarralde F, IEEE Transactions on Automatic Control 15 pp 468– (1996) · Zbl 0846.93065 · doi:10.1109/9.486654
[17] DOI: 10.1016/0065-227X(86)90003-1 · doi:10.1016/0065-227X(86)90003-1
[18] DOI: 10.1109/TAC.2005.864190 · Zbl 1366.93391 · doi:10.1109/TAC.2005.864190
[19] Olfati-Saber R, Proceedings of IEEE Conference on Decision and Control pp 2022– (2003)
[20] Olfati-Saber R, IEEE Transactions on Automatic Control 49 pp 1277– (2004) · Zbl 1365.93301 · doi:10.1109/TAC.2004.834113
[21] DOI: 10.1145/37402.37406 · doi:10.1145/37402.37406
[22] DOI: 10.1109/TAC.2005.846556 · Zbl 1365.93302 · doi:10.1109/TAC.2005.846556
[23] Ren W, Proceedings of IEEE Conference on Decision and Control pp 2295– (2007)
[24] DOI: 10.1016/j.physd.2005.10.012 · Zbl 1131.93354 · doi:10.1016/j.physd.2005.10.012
[25] Su H, The 17th IFAC World Congress pp 3725– (2008)
[26] Su H, IEEE Transactions on Automatic Control (2009)
[27] DOI: 10.1002/asjc.22 · doi:10.1002/asjc.22
[28] Tanner HG, IEEE International Conference Robotics and Automation pp 3006– (2004)
[29] DOI: 10.1109/TAC.2007.895948 · Zbl 1366.93414 · doi:10.1109/TAC.2007.895948
[30] DOI: 10.1103/PhysRevLett.75.1226 · doi:10.1103/PhysRevLett.75.1226
[31] Xiao F, International Journal of Control 50 pp 655– (2006)
[32] Zavlanos MM, Proceedings of IEEE Conference on Decision and Control pp 2919– (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.