zbMATH — the first resource for mathematics

A continuation/GMRES method for fast computation of nonlinear receding horizon control. (English) Zbl 1168.93340
The author deals with a numerical algorithm for nonlinear receding horizon control. The original continuous-time problem was first discretized over the horizon, and a two-point boundary-value problem was obtained to determine the sequence of control input for the discretzed problem. The proposed algorithm is demonstrated for a numerical example of a two-link arm whose dynamics is highly nonlinear. Numerical study shows that the proposed algorithm is faster than the conventional algorithms.

93B40 Computational methods in systems theory (MSC2010)
93B51 Design techniques (robust design, computer-aided design, etc.)
Full Text: DOI
[1] Alamir, M., Solutions of nonlinear optimal and robust control problems via a mixed collocation/DAE’s based algorithm, Automatica, 37, 1109-1115, (2001) · Zbl 0972.93021
[2] Al’Brekht, E.G., On the optimal stabilization of nonlinear systems, Journal of applied mathematics and mechanics, 25, 5, 1254-1266, (1961) · Zbl 0108.10503
[3] Allgower, E.L.; Georg, K., Numerical continuation methods, (1990), Springer Heiderberg · Zbl 0717.65030
[4] Ascher, U.M.; Mattheji, R.M.M.; Russel, R.D., Numerical solution of boundary value problems for ordinary differential equations, (1995), SIAM Philadelphia, PA
[5] Barrett, R.; Berry, M.; Chan, T.F.; Demmel, J.; Donato, J.; Dongarra, J.; Eijkhout, V.; Pozo, R.; Romine, C.; Van der Vorst, H., Templates for the solution of linear systems: building blocks for iterative methods, (1994), SIAM Philadelphia, PA
[6] Beard, R.W.; Saridis, G.N.; Wen, J.T., Approximate solutions to the time-invariant Hamilton-Jacobi-Bellman equation, Journal of optimization theory and applications, 96, 3, 589-626, (1998) · Zbl 0916.49021
[7] Biegler, L. T. (2000). Efficient solution of dynamic optimization and NMPC problems. In F. Allgöwer, & A. Zheng (Eds.), Nonlinear model predictive control (pp. 219-243). Basel: Birkhäuser. · Zbl 0966.93048
[8] Cannon, M.; Kouvaritakis, B.; Lee, Y.I.; Brooms, A.C., Efficient non-linear model based predictive control, International journal of control, 74, 4, 361-372, (2001) · Zbl 1010.93044
[9] Diehl, M.; Bock, H.G.; Findeisen, R.; Schlöder, J.P.; Nagy, Z.; Allgöwer, F., Real-time optimization and nonlinear model predictive control of process governed by differential-algebraic equations, Journal of process control, 12, 4, 577-585, (2002)
[10] Fontes, F.A.C.C., A general framework to design stabilizing nonlinear model predictive controllers, Systems and control letters, 42, 127-143, (2001) · Zbl 0985.93023
[11] Goh, C.J., On the nonlinear optimal regulator problem, Automatica, 29, 3, 751-756, (1993) · Zbl 0771.93027
[12] Imae, J., & Takahashi, J. (1999). A design method for nonlinear H∞ control systems via Hamilton-Jacobi-Isaacs equations: A genetic programming approach. In Proceedings of the 38th IEEE conference on decision and control, Phoenix, AZ (pp. 3782-3783).
[13] Kelley, C.T., Iterative methods for linear and nonlinear equations, Frontiers in applied mathematics, Vol. 16, (1995), SIAM Philadelphia, PA · Zbl 0832.65046
[14] Kreisselmeier, G.; Birkhölzer, T., Numerical nonlinear regulator design, IEEE transactions on automatic control, 39, 1, 33-46, (1994) · Zbl 0796.93034
[15] Liu, D.C.; Nocedal, J., On the limited memory method for large scale optimization, Mathematical programming B, 45, 3, 503-528, (1989) · Zbl 0696.90048
[16] Lu, P., Optimal predictive control of continuous nonlinear systems, International journal of control, 62, 3, 633-649, (1995) · Zbl 0830.93028
[17] Mayne, D.Q.; Rawlings, J.B.; Rao, C.V.; Scokaert, P.O.M., Constrained model predictive controlstability and optimality, Automatica, 36, 6, 789-814, (2000) · Zbl 0949.93003
[18] Meadows, E. S., & Rawlings, J. B. (1997). Model predictive control. In M. A. Henson, & D. E. Seborg (Eds.), Nonlinear process control (pp. 233-310). Englewood Cliffs, NJ: Prentice-Hall (Chapter 5). · Zbl 0876.93064
[19] Miele, A.; Mangiavacchi, A.; Aggarwal, A.K., Modified quasi-linearization algorithm for optimal control problems with nondifferential constraints, Journal of optimization theory and applications, 14, 5, 529-556, (1974) · Zbl 0281.49016
[20] Nash, S. G. (1984a). http://www.netlib.org/opt/tn.
[21] Nash, S.G., Newton-type minimization via the Lanczos algorithm, SIAM journal of numerical analysis, 21, 4, 770-788, (1984) · Zbl 0558.65041
[22] Nocedal, J. (1990). http://www.netlib.org/opt/lbfgs_um.shar.
[23] Ohtsuka, T., Time-variant receding-horizon control of nonlinear systems, Journal of guidance, control, and dynamics, 21, 1, 174-176, (1998) · Zbl 0919.49013
[24] Ohtsuka, T. (2000). http://www-newton.mech.eng.osaka-u.ac.jp/ ohtsuka/code/index.htm.
[25] Ohtsuka, T.; Fujii, H.A., Stabilized continuation method for solving optimal control problems, Journal of guidance, control, and dynamics, 17, 5, 950-957, (1994) · Zbl 0822.49025
[26] Ohtsuka, T.; Fujii, H.A., Real-time optimization algorithm for nonlinear receding-horizon control, Automatica, 33, 6, 1147-1154, (1997) · Zbl 0879.93017
[27] Qin, S. J., & Badgwell, T. A. (2000). An overview of nonlinear model predictive control applications. In F. Allgöwer, & A. Zheng (Eds.), Nonlinear model predictive control (pp. 369-392.) Basel: Birkhäuser.
[28] Richter, S.L.; DeCarlo, R.A., Continuation methodstheory and applications, IEEE transactions on automatic control, AC-28, 6, 660-665, (1983)
[29] Tousain, R. L., & Bosgra, O. H. (2000). Efficient dynamic optimization for nonlinear model predictive control—application to a high-density poly-ethylene grade change problem. In Proceedings of the 39th IEEE conference on decision and control, December, 2000, Sydney, Australia (pp. 760-765).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.