×

A mesoscale investigation of strain rate effect on dynamic deformation of single-crystal copper. (English) Zbl 1169.74363

Summary: A combined finite element (FE) simulation and discrete dislocation dynamics (DD) approach has been developed in this paper to investigate the dynamic deformation of single-crystal copper at mesoscale. The DD code yields the plastic strain based on the slip of dislocations and serves as a substitute for the 3D constitutive form used in the usual FE computation, which is implemented into ABAQUS/Standard with a user-defined material subroutine. On the other hand, the FE code computes the displacement and stress field during the dynamic deformation. The loading rate effects on the yield stress and the deformation patterning of single-crystal copper are investigated. With the increasing of strain rate, the yield stress of single-crystal copper increases rapidly. A critical strain rate exists in each single-crystal copper block for the given size and dislocation sources, below which the yield stress is relatively insensitive to the strain rate. The dislocation patterning changes from non-uniform to uniform under high-strain-rate. The shear stresses in the bands are higher than that in the neighboring regions, which are formed shear bands in the crystal. The band width increases with the strain rate, which often take places where the damage occurs.

MSC:

74E15 Crystalline structure
74S05 Finite element methods applied to problems in solid mechanics
74C99 Plastic materials, materials of stress-rate and internal-variable type
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Bringa, E. M.; Rosolankova, K.; Rudd, R. E.; Remington, B. A.; Wark, J. S.; Duchaineau, M.; Kalantar, D. H.; Hawreliak, J.; Belak, J.: Shock deformation of face-centered-cubic metals on subnanosecond timescales, Nat. mater. 5, 805 (2006)
[2] Becker, R.: Elastische nachwirking und plastizitat, Z. phys. 26, 919 (1925)
[3] Bulatov, V. V.: Current developments and trends in dislocation dynamics, J. computer-aided mater. Des. 9, 133-144 (2002)
[4] Chen, Y. J.; Meyers, M. A.; Nesterenko, V. F.: Spontaneous and forced shear localization in high-strain-rate deformation of tantalum, Mater. sci. Eng. 268, 70 (1999)
[5] Devincre, B.; Kubin, L. P.: The modeling of dislocation dynamics: elastic behavior versus core properties, Phil. trans. R. soc. Lond. A 355, 2003-2012 (1997) · Zbl 1087.82508
[6] Devincre, B.; Kubin, L. P.: Mesoscopic simulations of plastic deformation, Mater. sci. Eng. 309-310, 211-219 (2001)
[7] Devincre, B.; Kubin, L. P.: Physical analyses of crystal plasticity by DD simulations, Scripta mater. 54, 741-746 (2006)
[8] Devincre, B.; Condat, M.: Model validation of a 3D simulation of dislocation dynamics: discretization and line tension effects, Acta metall. Mater. 40, 2629-2637 (1992)
[9] Daw, M. S.; Baskes, M. I.: Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. rev. B 29, No. 12, 6443 (1984)
[10] Edington, J. W.: The influence of strain rate on the mechanical properties and dislocation substructure in deformed copper single crystals, Phil. mag. 19, No. 162, 41 (1969)
[11] Fivel, M.: Mesoscopic scale simulation of dislocation dynamics in fcc metals: principles and applications, Model. simul. Mater. sci. Eng. 6, 755-770 (1998)
[12] Follansbee, P. S.; Gray, G. T.: Dynamic deformation of shock prestrained copper, Mater. sci. Eng. A 138, 23 (1991)
[13] Gillis, P. P.; Gilman, J. J.; Taylor, J. W.: Stress dependences of dislocation velocities, Phil. mag. 20, 278 (1969)
[14] Gillis, P. P.; Kratochvil, J.: Dislocation acceleration, Phil. mag. 21, 425 (1970)
[15] Guo, Y.; Zhuang, Z.; Li, X. Y.; Chen, Z.: An investigation of the combined size and rate effects on the mechanical responses of FCC metals, Int. J. Solids struct 44, 1180-1195 (2007) · Zbl 1144.74006
[16] Holian, B. L.; Lomdahl, P. S.: Plasticity induced by shock waves in nonequilibrium molecular-dynamics simulations, Science 280, No. 3725, 2085 (1998)
[17] Hirth, J. P.; Lothe, J.: Theory of dislocations, (1982)
[18] Horstemeyer, M. F.; Baskes, M. I.; Plimpton, S. J.: Length scale and time scale effects on the plastic flow of FCC metals, Acta. mater. 49, 4363 (2001)
[19] Hoagland, R. G.; Baskes, M. I.: An atomistic study of the effects of stress and hydrogen on a dislocation lock in nickel, Scripta mater. 39, No. 4-5, 417 (1998)
[20] Lemarchand, C.; Devincre, B.: Homogenization method for a discrete-continuum simulation of dislocation dynamics, J. mech. Phys. solids 49, 1969-1982 (2001) · Zbl 0998.74063
[21] Liang, W.; Zhou, M.: Response of copper nanowires in dynamic tensile deformation, Proc. inst. Mech. eng. Part C: J. Mech. eng. Sci. 218, No. 6, 599 (2004)
[22] Liu, X. H.; Schwarz, K. W.: Modeling of dislocations intersecting a free surface, Model. simul. Mater. sci. Eng. 13, 1233-1247 (2005)
[23] Meyers, M. A.: Dynamic behavior of materials, (1994) · Zbl 0893.73002
[24] Meyers, M. A.; Benson, D. J.; Kad, B. K.: Constitutive description of dynamic deformation: physically-based mechanisms, Mater. sci. Eng. 322, 194-216 (2002)
[25] Meyers, M. A.; Gregori, F.; Kad, B. K.: Laser-induced shock compression of mono-crystalline copper: characterization and analysis, Acta mater. 51, 1211-1228 (2003)
[26] Needleman, A.: Computational mechanics at the mesoscale, Acta mater. 48, 105-124 (1999)
[27] Peirce, D.; Asaro, R. J.; Needleman, A.: Material rate dependence and localized deformation in crystalline solid, Acta metall. 31, 1951-1976 (1982)
[28] Seeger, A.: Theorie der kristallplastizitat, Z. naturforsch. 9A, 758 (1954) · Zbl 0059.22701
[29] Shehadeh, M. A.; Bringa, E. M.; Zib, H. M.; Mcnaney, J. M.; Remington, B. A.: Simulation of shock-induced plasticity including homogeneous and heterogeneous dislocation nucleations, Appl. phys. Lett. 89, 171918 (2006)
[30] Tadmor, E. B.; Phillips, R.; Ortiz, M.: Hierarchical modeling in the mechanics of materials, Int. J. Solids struct. 37, 379-389 (2000) · Zbl 1075.74024
[31] Taylor, P.; Dodson, B. W.: Propagating lattice instabilities in shock-loaded metals, Phys. rev. B 42, No. 2, 1200 (1990)
[32] Van Der Giessent, E.; Needleman, A.: Discrete dislocation plasticity: a simple planar model, Mater. sci. Eng. 3, 689-735 (1995)
[33] Wright, T. W.: The physics and mathematics of adiabatic shear bands, (2002) · Zbl 1006.74002
[34] Zerilli, F. J.; Armstrong, R. W.: Dislocation-mechanics-based constitutive relations for material dynamics calculations, J. appl. Phys. 61, 1816 (1987)
[35] Zerilli, F. J.; Armstrong, R. W.: Description of tantalum deformation behavior by dislocation mechanics based constitutive relations, J. appl. Phys. 68, 915 (1990)
[36] Zbib, H. M.; De La Rubia, T. Diaz: A multiscale model of plasticity, Int. J. Plast. 18, 1133-1163 (2002) · Zbl 1062.74008
[37] Zhou, F.; Wright, T. W.; Ramesh, K. T.: A numerical methodology for investigating the formation of adiabatic shear band, J. appl. Phys. 54, 904-926 (2006) · Zbl 1120.74354
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.