zbMATH — the first resource for mathematics

The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. (English) Zbl 1169.76010
Summary: In recent years two nonlinear dispersive partial differential equations have attracted much attention due to their integrable structure. We prove that both equations arise in the modeling of the propagation of shallow water waves over a flat bed. The equations capture stronger nonlinear effects than the classical nonlinear dispersive Benjamin-Bona-Mahoney and Korteweg-de Vries equations. In particular, they accommodate wave breaking phenomena.

76B15 Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q53 KdV equations (Korteweg-de Vries equations)
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI arXiv
[1] Alinhac, S., Gérard, P.: Opérateurs Pseudo-différentiels et Théorème de Nash-Moser. Savoirs Actuels. InterEditions, Paris; Editions du Centre National de la Recherche Scientifique (CNRS), Meudon, 190 pp., 1991
[2] Angulo, J.; Bona, J. L.; Linares, F.; Scialom, M., Scaling, stability and singularities for nonlinear, dispersive wave equations: the critical case, Nonlinearity, 15, 759-786, (2002) · Zbl 1034.35116
[3] Alvarez-Samaniego, B.; Lannes, D., Large time existence for 3D water-waves and asymptotics, Invent. Math., 171, 485-541, (2008) · Zbl 1131.76012
[4] Alvarez-Samaniego, B.; Lannes, D., A Nash-Moser theorem for singular evolution equations, Application to the Serre and Green-Naghdi equations. Indiana Univ. Math. J., 57, 97-131, (2008) · Zbl 1144.35007
[5] Benjamin, T. B.; Bona, J. L.; Mahoney, J. J., Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. A, 227, 47-78, (1972) · Zbl 0229.35013
[6] Bressan, A.; Constantin, A., Global conservative solutions of the Camassa-Holm equation, Arch. Rat. Mech. Anal., 183, 215-239, (2007) · Zbl 1105.76013
[7] Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71, 1661-1664, (1993) · Zbl 0972.35521
[8] Constantin, A., On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. A, 457, 953-970, (2001) · Zbl 0999.35065
[9] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 229-243, (1998) · Zbl 0923.76025
[10] Constantin, A.; Gerdjikov, V. S.; Ivanov, R. I., Inverse scattering transform for the Camassa-Holm equation, Inverse Probl., 22, 2197-2207, (2006) · Zbl 1105.37044
[11] Constantin, A.; Strauss, W., Stability of the Camassa-Holm solitons, J. Nonlinear Sci, 12, 415-422, (2002) · Zbl 1022.35053
[12] Craik, A. D.D., The origins of water wave theory, Ann. Rev. Fluid Mech., 36, 1-28, (2004) · Zbl 1076.76011
[13] Degasperis, A.; Holm, D.; Hone, A., A new integrable equation with peakon solutions, Theor. Math. Phys., 133, 1461-1472, (2002)
[14] Degasperis A., Procesi M. Asymptotic integrability. Symmetry and Perturbation Theory (Eds. Degasperis A. and Gaeta G.) World Scientific, Singapore, 23-37, 1999 · Zbl 0963.35167
[15] Drazin P.G., Johnson R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1992) · Zbl 0661.35001
[16] Escher, J.; Liu, Y.; Yin, Z., Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241, 457-485, (2006) · Zbl 1126.35053
[17] Fokas, A. S.; Fuchssteiner, B., Symplectic structures, their Bäcklund transformation and hereditary symmetries, Physica D, 4, 821-831, (1981) · Zbl 1194.37114
[18] Fornberg, B.; Whitham, G. B., A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. R. Soc. Lond. A, 289, 373-404, (1978) · Zbl 0384.65049
[19] Green, A. E.; Naghdi, P. M., A derivation of equations for wave propagation in water of variable depth, J. Fluid Mech., 78, 237-246, (1976) · Zbl 0351.76014
[20] Ivanov, R. I., On the integrability of a class of nonlinear dispersive wave equations, J. Nonlinear Math. Phys., 12, 462-468, (2005) · Zbl 1089.35522
[21] Johnson R.S.: A Modern Introduction to the Mathematical Theory of Water Waves. Cambridge University Press, Cambridge (1997) · Zbl 0892.76001
[22] Johnson, R. S., Camassa-Holm, Korteweg-de Vries and related models for water waves, J. Fluid Mech., 457, 63-82, (2002) · Zbl 1037.76006
[23] Korteweg, D. J.; Vries, G., On the change of form of long waves advancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 39, 422, (1895) · JFM 26.0881.02
[24] Lenells, J., Conservation laws of the Camassa-Holm equation, J. Phys. A, 38, 869-880, (2005) · Zbl 1076.35100
[25] Li, Y. A., A shallow-water approximation to the full water wave problem, Commun. Pure Appl. Math., 59, 1225-1285, (2006) · Zbl 1169.76012
[26] Matsuno, Y., The \(N\)-soliton solution of the Degasperis-Procesi equation, Inverse Probl., 21, 2085-2101, (2005) · Zbl 1112.37072
[27] McKean, H. P., Breakdown of the Camassa-Holm equation, Commun. Pure Appl. Math., 57, 416-418, (2004) · Zbl 1052.35130
[28] Molinet, L., On well-posedness results for the Camassa-Holm equation on the line: a survey, J. Nonlinear Math. Phys., 11, 521-533, (2004) · Zbl 1069.35076
[29] Peregrine, D. H., Calculations of the development of an undular bore, J. Fluid Mech., 25, 321-330, (1966)
[30] Souganidis, P. E.; Strauss, W. A., Instability of a class of dispersive solitary waves, Proc. R. Soc. Edinburgh Sect. A, 114, 195-212, (1990) · Zbl 0713.35108
[31] Stoker J.J.: Water Waves. Interscience Publ., New York (1957) · Zbl 0078.40805
[32] Tao T. Low-regularity global solutions to nonlinear dispersive equations. Surveys in Analysis and Operator Theory, Proc. Centre Math. Appl. Austral. Nat. Univ., 19-48, 2002 · Zbl 1042.35068
[33] Whitham G.B. Linear and Nonlinear Waves. Wiley, New York · Zbl 0373.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.