×

zbMATH — the first resource for mathematics

State and unknown input estimation for discrete time multiple model. (English) Zbl 1169.93361
Summary: This paper deals with the state estimation of nonlinear discrete systems described by a multiple model with unknown inputs. The main goal concerns the simultaneous estimation of the system’s state and the unknown inputs. This goal is achieved through the design of a multiple observer based on the elimination of the unknown inputs. It is shown that the observer gains are solutions of a set of linear matrix inequalities. After that, an unknown input estimation method is proposed. An academic example and an application dealing with message decoding illustrate the effectiveness of the proposed multiple observer.

MSC:
93C55 Discrete-time control/observation systems
93C10 Nonlinear systems in control theory
93B55 Pole and zero placement problems
15A39 Linear inequalities of matrices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Akhenak, A.; Chadli, M.; Ragot, J.; Maquin, D., State estimation of uncertain multiple model with unknown inputs, (), 3563-3568
[2] Alvares, G.; Montoya, F.; Romera, M.; Pastor, G., Breaking parameter modulated chaotic secure communication system, Chaos, solitons and fractals, 21, 4, 783-787, (2004) · Zbl 1049.94501
[3] A. Amato, M. Matte, Design of full unknown input observers with \(H_\infty\) performance, in: IEEE International Conference on Control Applications, vol. 1, 2002, pp. 74-75.
[4] Angelov, P.; Filev, D., An approach to online identification of takagi – sugeno fuzzy models, IEEE transactions on systems, man and cybernetics, part B, 34, 1, 484-498, (2004)
[5] Boutayeb, M.; Darouach, M.; Rafaralahy, H., Generalized state-space observers for chaotic synchronization and secure communication, IEEE transactions on circuits and systems I: fundamental theory and applications, 49, 3, 345-349, (2002) · Zbl 1368.94087
[6] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear matrix inequalities in system and control theory, (1994), SIAM Philadelphia, PA · Zbl 0816.93004
[7] Chadli, M., On the stability analysis of uncertain fuzzy models, International journal of fuzzy systems, 8, 4, 224-231, (2006)
[8] Chadli, M.; Elhajjaji, A., Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties—comment on, Fuzzy sets and systems journal, 157, 9, 1276-1281, (2006) · Zbl 1090.93022
[9] Chadli, M.; Maquin, D.; Ragot, J., Stability analysis and design for continuous-time takagi – sugeno control systems, International journal of fuzzy systems, 7, 3, (2005)
[10] Chang, S.-K.; You, W.-T.; Hsu, P.-L., Design of general structured observers for linear systems with unknown inputs, Journal of the franklin institute, 334, 2, 213-232, (1997) · Zbl 0870.93019
[11] Chen, M.; Zhou, D.; Shang, Y., A new observer-based synchronization scheme for private communication, Chaos, solitons and fractals, 24, 1025-1030, (2005) · Zbl 1069.94508
[12] Chilali, M.; Gabinet, P., \(h_\infty\) design with pole placement constraints: an lmi approach, IEEE transactions on automatic control, 41, 3, 358-367, (1996) · Zbl 0857.93048
[13] G. Conte, A.M. Perdon, G.G. Peroli, Unknown input observers for linear delay systems: a geometric approach, in: IEEE Conference on Decision and Control, vol. 6, 2003, pp. 6054-6059.
[14] Darouach, M.; Zasadzinski, M.; Xu, S.J., Full-order observers for linear systems with unknown inputs, IEEE transactions on automatic control, 39, 3, 606-609, (1994) · Zbl 0813.93015
[15] Demetriou, M.A., Using unknown input observers for robust adaptive fault detection in vector second-order systems, Mechanical systems and signal processing, 19, 2, 291-309, (2005)
[16] C. Edwards, A comparison of sliding mode and unknown input observers for fault reconstruction, in: IEEE Conference on Decision and Control, vol. 5, 2004, pp. 5279-5284.
[17] Edwards, C.; Spurgeon, S.K.; Patton, R.J., Sliding mode observers for fault detection and isolation, Automatica, 36, 4, 541-553, (2000) · Zbl 0968.93502
[18] T. Floquet, J. Barbot, A sliding mode approach of unknown input observers for linear systems, in: IEEE Conference on Decision and Control, vol. 2, 2004, pp. 1724-1729.
[19] Fu, Y.-M.; Duan, G.-R.; Song, S.-M., Design of unknown input observer for linear time-delay systems, International journal of control, automation, and systems, 2, 4, 530-535, (2004)
[20] K. Gasso, G. Mourot, J. Ragot, Structure identification in multiple model representation: elimination and merging of local models, in: IEEE Conference on Decision and Control, vol. 3, 2001, pp. 2992-2997.
[21] Johansen, T.A.; Babuska, R., Multiobjective identification of takagi – sugeno fuzzy models, IEEE transactions on fuzzy systems, 11, 6, 847-860, (2003)
[22] Kim, E.; Lee, H., New approaches to relaxed quadratic stability of fuzzy control systems, IEEE transactions on fuzzy systems, 8, 5, 523-534, (2000)
[23] Koenig, D., Unknown input proportional multiple-integral observer design for descriptor systems: application to state and fault estimation, IEEE transactions on automatique control, 5, 2, 213-217, (2005) · Zbl 1365.93487
[24] Li, C.; Liao, X.; wo Wong, K., Lag synchronization of hyperchaos with application to secure communications, Chaos, solitons and fractals, 23, 183-193, (2005) · Zbl 1068.94004
[25] Lin, S.F.; Wang, A.P., Unknown input observers for singular systems designed by eigenstructure assignment, Journal of the franklin institute, 340, 1, 43-61, (2003) · Zbl 1027.93006
[26] Murray-Smith, R., Multiple model approaches to modelling and control, (1997), Taylor and Francis London
[27] R.J. Patton, J. Chen, C.J. Lopez-Toribio, Fuzzy observer for nonlinear dynamic systems fault diagnosis, in: IEEE Conference on Decision and Control, vol. 1, 1998, pp. 84-89.
[28] O. Sename, Unknown input robust observer for time delay system, in: IEEE Conference on Decision and Control, vol. 2, 1997, pp. 1629-1630.
[29] A. Stotsky, I. Kolmanovsky, Simple unknown input estimation techniques for automotive applications, in: American Control Conference, 2001, pp. 3312-3317.
[30] Takagi, J.; Sugeno, M., Fuzzy identification of systems and its application to modelling and control, IEEE transactions on systems, man and cybernetics, 15, 116-132, (1985) · Zbl 0576.93021
[31] Tan, C.P.; Edwards, C., Sliding mode observers for detection and reconstruction of sensor faults, Automatica, 38, 10, 1815-1821, (2002) · Zbl 1011.93505
[32] Tanaka, K.; Ikeda, T.; He, Y.Y., Fuzzy regulators and fuzzy observers: relaxed stability conditions and lmi-based design, IEEE transactions on fuzzy systems, 6, 1, 250-256, (1998)
[33] Vandenberghe, L.; Boyd, S., Semidefinite programming, SIAM review, 38, 1, 49-95, (1996) · Zbl 0845.65023
[34] Wang, S.H.; Davison, E.J.; Dorato, P., Observing the states of systems with unmeasurable disturbances, IEEE transactions on automatic control, 20, 716-717, (1995) · Zbl 0318.93048
[35] Zhou, S.; Lam, J.; Zheng, W., Control design for fuzzy systems based on relaxed nonquadratic stability and \(h_\infty\) performance conditions, IEEE transactions on fuzzy systems, 15, 2, 188-199, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.