×

Maximal slope of tensor product of Hermitian vector bundles. (English) Zbl 1170.14013

The author gives an upper bound for the maximal slope of the tensor product of several non-zero Hermitian vector bundles on the spectrum of an algebraic integer ring. He applies Minkowski’s First Theorem, and so he has to find an estimation for the Arakelov degree of an arbitrary Hermitian line subbundle \( \overline M\) of the tensor product. In the case where the generic fiber of \( M\) is semistable in the sense of geometric invariant theory, the estimation is established by constructing, through the classical invariant theory, a special polynomial which does not vanish on the generic fibre of \( M\). Otherwise the author uses an explicit version of a result of Ramanan and Ramanathan to reduce the general case to the former one.

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14G40 Arithmetic varieties and schemes; Arakelov theory; heights
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] M. Atiyah, R. Bott, and V. K. Patodi, On the heat equation and the index theorem, Invent. Math. 19 (1973), 279 – 330. · Zbl 0257.58008
[2] Jean-Benoît Bost, Semi-stability and heights of cycles, Invent. Math. 118 (1994), no. 2, 223 – 253. · Zbl 0873.14028
[3] Jean-Benoît Bost, Périodes et isogenies des variétés abéliennes sur les corps de nombres (d’après D. Masser et G. Wüstholz), Astérisque 237 (1996), Exp. No. 795, 4, 115 – 161 (French, with French summary). Séminaire Bourbaki, Vol. 1994/95.
[4] J.-B. Bost. Hermitian vector bundle and stability. Talk at Oberwolfach Conference “Algebraische Zahlentheorie”, July 1997.
[5] Jean-Benoît Bost, Algebraic leaves of algebraic foliations over number fields, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 161 – 221 (English, with English and French summaries). · Zbl 1034.14010
[6] J.-B. Bost and K. Künnemann. Hermitian vector bundles and extension groups on arithmetic schemes. I. geometry of numbers. preprint, 2007.
[7] Antoine Chambert-Loir, Théorèmes d’algébricité en géométrie diophantienne (d’après J.-B. Bost, Y. André, D. & G. Chudnovsky), Astérisque 282 (2002), Exp. No. 886, viii, 175 – 209 (French, with French summary). Séminaire Bourbaki, Vol. 2000/2001. · Zbl 1044.11055
[8] H. Chen. Positivité en géométrie algébrique et en géométrie d’Arakelov : application à l’algébrisation et à l’étude asymptotique des polygones de Harder-Narasimhan. Doctoral thesis, École Polytechnique, December 2006.
[9] Maurizio Cornalba and Joe Harris, Divisor classes associated to families of stable varieties, with applications to the moduli space of curves, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 3, 455 – 475. · Zbl 0674.14006
[10] E. de Shalit. \( f\)-isocrystals. Lecture notes.
[11] E. de Shalit and O. Parzanchevski. On tensor products of semistable lattices. Preprint, 2006.
[12] Gerd Faltings, Crystalline cohomology and \?-adic Galois-representations, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988) Johns Hopkins Univ. Press, Baltimore, MD, 1989, pp. 25 – 80. · Zbl 0805.14008
[13] Jean-Marc Fontaine, Modules galoisiens, modules filtrés et anneaux de Barsotti-Tate, Journées de Géométrie Algébrique de Rennes. (Rennes, 1978) Astérisque, vol. 65, Soc. Math. France, Paris, 1979, pp. 3 – 80 (French). · Zbl 0429.14016
[14] Carlo Gasbarri, Heights and geometric invariant theory, Forum Math. 12 (2000), no. 2, 135 – 153. · Zbl 0955.14018
[15] É. Gaudron. Pentes de fibrés vectoriels adéliques sur un corps globale. Rendiconti del Seminario Matematico della Università di Padova, 119:21-95, 2008.
[16] David Gieseker, Stable vector bundles and the Frobenius morphism, Ann. Sci. École Norm. Sup. (4) 6 (1973), 95 – 101. · Zbl 0281.14013
[17] D. Gieseker, Global moduli for surfaces of general type, Invent. Math. 43 (1977), no. 3, 233 – 282. · Zbl 0389.14006
[18] Philippe Graftieaux, Formal groups and the isogeny theorem, Duke Math. J. 106 (2001), no. 1, 81 – 121. · Zbl 1064.14045
[19] Daniel R. Grayson, Reduction theory using semistability, Comment. Math. Helv. 59 (1984), no. 4, 600 – 634. · Zbl 0564.20027
[20] George R. Kempf, Instability in invariant theory, Ann. of Math. (2) 108 (1978), no. 2, 299 – 316. · Zbl 0406.14031
[21] D. Mumford, J. Fogarty, and F. Kirwan, Geometric invariant theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], vol. 34, Springer-Verlag, Berlin, 1994. · Zbl 0797.14004
[22] M. S. Narasimhan and C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. of Math. (2) 82 (1965), 540 – 567. · Zbl 0171.04803
[23] S. Ramanan and A. Ramanathan, Some remarks on the instability flag, Tohoku Math. J. (2) 36 (1984), no. 2, 269 – 291. · Zbl 0567.14027
[24] M. Raynaud, Fibrés vectoriels instables — applications aux surfaces (d’après Bogomolov), Algebraic surfaces (Orsay, 1976 – 78) Lecture Notes in Math., vol. 868, Springer, Berlin-New York, 1981, pp. 293 – 314 (French).
[25] Guy Rousseau, Immeubles sphériques et théorie des invariants, C. R. Acad. Sci. Paris Sér. A-B 286 (1978), no. 5, A247 – A250 (French, with English summary). · Zbl 0375.14013
[26] Ulrich Stuhler, Eine Bemerkung zur Reduktionstheorie quadratischer Formen, Arch. Math. (Basel) 27 (1976), no. 6, 604 – 610 (German). · Zbl 0338.10024
[27] Burt Totaro, Tensor products in \?-adic Hodge theory, Duke Math. J. 83 (1996), no. 1, 79 – 104. · Zbl 0873.14019
[28] Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. · Zbl 1024.20501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.