×

zbMATH — the first resource for mathematics

Some properties of solutions to the weakly dissipative Degasperis-Procesi equation. (English) Zbl 1170.35083
Summary: We consider the weakly dissipative Degasperis-Procesi equation. The present paper is concerned with some aspects of existence of global solutions, persistence properties and propagation speed. First we try to discuss the local well-posedness and blow-up scenario, then establish the sufficient conditions on global existence of the solution. Finally, persistence properties on strong solutions and the propagation speed for the weakly dissipative Degasperis-Procesi equation are also investigated.

MSC:
35Q53 KdV equations (Korteweg-de Vries equations)
35B60 Continuation and prolongation of solutions to PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. rev. lett., 71, 1661-1664, (1993) · Zbl 0972.35521
[2] Constantin, A., The Cauchy problem for the periodic camassa – holm equation, J. differential equations, 141, 218-235, (1997) · Zbl 0889.35022
[3] Dullin, H.R.; Gottwald, G.A.; Holm, D.D., Korteweg – de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid dynam. res., 33, 73-79, (2003) · Zbl 1032.76518
[4] Degasperis, A.; Holm, D.D.; Hone, A.N.W., A new integrable equation with peakon solutions, Theoret. and math. phys., 133, 1461-1472, (2002)
[5] Degasperis, A.; Procesi, M., (), 23
[6] Guo, Z., Blow up, global existence, and infinite propagation speed for the weakly dissipative camassa – holm equation, J. math. phys., 49, 033516, (2008) · Zbl 1153.81368
[7] Himonas, A.; Misiolek, G.; Ponce, G.; Zhou, Y., Persistence properties and unique continuation of solutions of the camassa – holm equation, Comm. math. phys., 271, 511-512, (2007) · Zbl 1142.35078
[8] Kato, T., (), 25
[9] Liu, Y.; Yin, Z., Global existence and blow-up phenomena for the degasperis – procesi equation, Comm. math. phys., 267, 801-820, (2006) · Zbl 1131.35074
[10] McKean, H.P., Breakdown of a shallow water equation, Asian J. math., 2, 767-774, (1998) · Zbl 0959.35140
[11] Misiolek, G., Classical solutions of the periodic camassa – holm equation, Geom. funct. anal., 12, 5, 1080-1104, (2002) · Zbl 1158.37311
[12] Molinet, L., On well-posedness results for camassa – holm equation on the line: A survey, J. nonlinear math. phys., 11, 4, 521-533, (2004) · Zbl 1069.35076
[13] Mustafa, O.G., A note on the degasperis – procesi equation, J. nonlinear math. phys., 12, 10-14, (2005) · Zbl 1067.35078
[14] Whitham, G.B., Linear and nonlinear waves, (1974), Wiley New York · Zbl 0373.76001
[15] Wu, S.; Yin, Z., Blow-up and decay of the solution of the weakly dissipative degasperis – procesi equation, SIAM J. math. anal., 40, 2, 475-490, (2008) · Zbl 1216.35126
[16] Wu, S.; Yin, Z., Blow up, blow up rate and decay of the solution of the weakly dissipative camassa – holm equation, J. math. phys., 47, 013504, (2006) · Zbl 1111.35067
[17] Xin, Z.; Zhang, P., On the uniqueness and large time behavior of the weak solution to a shallow water equation, Comm. partial differential equations, 27, 9-10, 1815-1844, (2002) · Zbl 1034.35115
[18] Zhou, Y., Wave breaking for a shallow water equation, Nonlinear anal., 57, 137-152, (2004) · Zbl 1106.35070
[19] Zhou, Y., Wave breaking for a periodic shallow water equation, J. math. anal. appl., 290, 591-604, (2004) · Zbl 1042.35060
[20] Zhou, Y., Blow up phenomena for the integrable degasperis – procesi equation, Phys. lett. A, 328, 157-162, (2004) · Zbl 1134.37361
[21] Y. Zhou, L. Zhu, On solutions to the Degasperis-Procesi equation, preprint, 2006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.