×

Analysis of hyperchaotic complex Lorenz systems. (English) Zbl 1170.37311


MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1016/0167-2789(82)90057-4 · Zbl 1194.37039
[2] DOI: 10.1016/0167-2789(83)90123-9 · Zbl 1194.76087
[3] Ning C. Z., Phys. Rev. A 41 pp 3827–
[4] Kiselev A. D., J. Phys. Stud. 2 pp 30–
[5] DOI: 10.1016/S0167-2789(96)00129-7 · Zbl 0887.34048
[6] DOI: 10.1142/S0129183107010425 · Zbl 1115.37035
[7] Mahmoud G. M., Int. J. Bifurcat. Chaos 17
[8] DOI: 10.1007/s11071-007-9200-y · Zbl 1170.70365
[9] DOI: 10.1142/S0218127404011624 · Zbl 1091.34524
[10] DOI: 10.1016/0167-2789(85)90176-9 · Zbl 0579.76051
[11] DOI: 10.1103/PhysRevLett.76.904
[12] Li Y., IEEE T. CAS 52 pp 204–
[13] DOI: 10.1142/S0218127403008284 · Zbl 1057.37026
[14] DOI: 10.1080/002071799220614 · Zbl 0989.93069
[15] DOI: 10.1016/j.physleta.2007.02.024 · Zbl 1203.93086
[16] Li Y., Dynam. Cont. Dis. Ser. B 14 pp 97–
[17] DOI: 10.1016/j.physleta.2006.10.044 · Zbl 1197.34107
[18] DOI: 10.1016/j.physa.2005.09.039
[19] DOI: 10.1016/j.physleta.2007.05.028 · Zbl 1209.93105
[20] DOI: 10.1103/PhysRevLett.91.034101
[21] DOI: 10.1088/0031-8949/77/02/025001 · Zbl 1141.37016
[22] Barrio R., Physica D 299 pp 43–
[23] DOI: 10.1016/j.physleta.2007.11.067 · Zbl 1220.37013
[24] DOI: 10.1016/j.chaos.2006.05.030
[25] DOI: 10.1142/S0218127407019950 · Zbl 1143.37309
[26] Frederickson P., J. Diff. Eq. 44 pp 185–
[27] Shuster H. G., Deterministic Chaos (1982)
[28] DOI: 10.1002/9783527617548
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.