Smale, Steve; Zhou, Ding-Xuan Online learning with Markov sampling. (English) Zbl 1170.68022 Anal. Appl., Singap. 7, No. 1, 87-113 (2009). Cited in 65 Documents MSC: 68Q32 Computational learning theory 37D15 Morse-Smale systems 41A25 Rate of convergence, degree of approximation 60B11 Probability theory on linear topological spaces 60J10 Markov chains (discrete-time Markov processes on discrete state spaces) Keywords:reproducing kernel Hilbert space PDF BibTeX XML Cite \textit{S. Smale} and \textit{D.-X. Zhou}, Anal. Appl., Singap. 7, No. 1, 87--113 (2009; Zbl 1170.68022) Full Text: DOI References: [1] DOI: 10.1090/S0002-9947-1950-0051437-7 · doi:10.1090/S0002-9947-1950-0051437-7 [2] DOI: 10.1109/72.501719 · doi:10.1109/72.501719 [3] DOI: 10.1090/S0273-0979-01-00923-5 · Zbl 0983.68162 · doi:10.1090/S0273-0979-01-00923-5 [4] DOI: 10.1017/CBO9780511618796 · Zbl 1274.41001 · doi:10.1017/CBO9780511618796 [5] DOI: 10.1007/s10208-004-0134-1 · Zbl 1083.68106 · doi:10.1007/s10208-004-0134-1 [6] Devroye L., A Probabilistic Theory of Pattern Recognition (1997) [7] DOI: 10.1023/A:1018946025316 · Zbl 0939.68098 · doi:10.1023/A:1018946025316 [8] Feller W., An Introduction to Probability Theory and Its Applications (1971) · Zbl 0219.60003 [9] DOI: 10.1109/TSP.2004.830991 · Zbl 1369.68281 · doi:10.1109/TSP.2004.830991 [10] DOI: 10.1007/978-94-010-0612-5 · doi:10.1007/978-94-010-0612-5 [11] Lax P. D., Functional Analysis (2002) · Zbl 1009.47001 [12] DOI: 10.1162/neco.1996.8.4.819 · Zbl 05477968 · doi:10.1162/neco.1996.8.4.819 [13] DOI: 10.1214/aop/1176988477 · Zbl 0836.60015 · doi:10.1214/aop/1176988477 [14] DOI: 10.1109/5.18626 · doi:10.1109/5.18626 [15] Robinson C., Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (1999) · Zbl 0914.58021 [16] DOI: 10.1007/978-3-642-65970-6 · doi:10.1007/978-3-642-65970-6 [17] DOI: 10.1090/S0002-9904-1967-11798-1 · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1 [18] DOI: 10.1007/s10208-004-0160-z · Zbl 1119.68098 · doi:10.1007/s10208-004-0160-z [19] DOI: 10.1142/S0219530503000089 · Zbl 1079.68089 · doi:10.1142/S0219530503000089 [20] DOI: 10.1090/S0273-0979-04-01025-0 · Zbl 1107.94007 · doi:10.1090/S0273-0979-04-01025-0 [21] DOI: 10.1016/j.acha.2005.03.001 · Zbl 1107.94008 · doi:10.1016/j.acha.2005.03.001 [22] DOI: 10.1007/s00365-006-0659-y · Zbl 1127.68088 · doi:10.1007/s00365-006-0659-y [23] Sun H. W., Adv. Comput. Math. [24] S. Vempala, Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ. 52, eds. J. E. Goodman, J. Pach and E. Welzl (Cambridge Univ. Press, Cambridge, 2005) pp. 577–616. [25] Yao Y., IEEE Trans. Inform. Theory [26] DOI: 10.1016/j.acha.2006.12.001 · Zbl 1124.68099 · doi:10.1016/j.acha.2006.12.001 [27] DOI: 10.1109/TIT.2006.883632 · Zbl 1323.68450 · doi:10.1109/TIT.2006.883632 [28] DOI: 10.1023/A:1019762724717 · Zbl 1124.37307 · doi:10.1023/A:1019762724717 [29] DOI: 10.1109/TIT.2003.813564 · Zbl 1290.62033 · doi:10.1109/TIT.2003.813564 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.