×

zbMATH — the first resource for mathematics

Online learning with Markov sampling. (English) Zbl 1170.68022

MSC:
68Q32 Computational learning theory
37D15 Morse-Smale systems
41A25 Rate of convergence, degree of approximation
60B11 Probability theory on linear topological spaces
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1090/S0002-9947-1950-0051437-7 · doi:10.1090/S0002-9947-1950-0051437-7
[2] DOI: 10.1109/72.501719 · doi:10.1109/72.501719
[3] DOI: 10.1090/S0273-0979-01-00923-5 · Zbl 0983.68162 · doi:10.1090/S0273-0979-01-00923-5
[4] DOI: 10.1017/CBO9780511618796 · Zbl 1274.41001 · doi:10.1017/CBO9780511618796
[5] DOI: 10.1007/s10208-004-0134-1 · Zbl 1083.68106 · doi:10.1007/s10208-004-0134-1
[6] Devroye L., A Probabilistic Theory of Pattern Recognition (1997)
[7] DOI: 10.1023/A:1018946025316 · Zbl 0939.68098 · doi:10.1023/A:1018946025316
[8] Feller W., An Introduction to Probability Theory and Its Applications (1971) · Zbl 0219.60003
[9] DOI: 10.1109/TSP.2004.830991 · Zbl 1369.68281 · doi:10.1109/TSP.2004.830991
[10] DOI: 10.1007/978-94-010-0612-5 · doi:10.1007/978-94-010-0612-5
[11] Lax P. D., Functional Analysis (2002) · Zbl 1009.47001
[12] DOI: 10.1162/neco.1996.8.4.819 · Zbl 05477968 · doi:10.1162/neco.1996.8.4.819
[13] DOI: 10.1214/aop/1176988477 · Zbl 0836.60015 · doi:10.1214/aop/1176988477
[14] DOI: 10.1109/5.18626 · doi:10.1109/5.18626
[15] Robinson C., Dynamical Systems: Stability, Symbolic Dynamics, and Chaos (1999) · Zbl 0914.58021
[16] DOI: 10.1007/978-3-642-65970-6 · doi:10.1007/978-3-642-65970-6
[17] DOI: 10.1090/S0002-9904-1967-11798-1 · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[18] DOI: 10.1007/s10208-004-0160-z · Zbl 1119.68098 · doi:10.1007/s10208-004-0160-z
[19] DOI: 10.1142/S0219530503000089 · Zbl 1079.68089 · doi:10.1142/S0219530503000089
[20] DOI: 10.1090/S0273-0979-04-01025-0 · Zbl 1107.94007 · doi:10.1090/S0273-0979-04-01025-0
[21] DOI: 10.1016/j.acha.2005.03.001 · Zbl 1107.94008 · doi:10.1016/j.acha.2005.03.001
[22] DOI: 10.1007/s00365-006-0659-y · Zbl 1127.68088 · doi:10.1007/s00365-006-0659-y
[23] Sun H. W., Adv. Comput. Math.
[24] S. Vempala, Combinatorial and Computational Geometry, Math. Sci. Res. Inst. Publ. 52, eds. J. E. Goodman, J. Pach and E. Welzl (Cambridge Univ. Press, Cambridge, 2005) pp. 577–616.
[25] Yao Y., IEEE Trans. Inform. Theory
[26] DOI: 10.1016/j.acha.2006.12.001 · Zbl 1124.68099 · doi:10.1016/j.acha.2006.12.001
[27] DOI: 10.1109/TIT.2006.883632 · Zbl 1323.68450 · doi:10.1109/TIT.2006.883632
[28] DOI: 10.1023/A:1019762724717 · Zbl 1124.37307 · doi:10.1023/A:1019762724717
[29] DOI: 10.1109/TIT.2003.813564 · Zbl 1290.62033 · doi:10.1109/TIT.2003.813564
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.