# zbMATH — the first resource for mathematics

On exact solutions of a class of fractional Euler-Lagrange equations. (English) Zbl 1170.70328
Summary: In this paper, first a class of fractional differential equations is obtained by using the fractional variational principles. We find a fractional Lagrangian $$L(x(t), \text{ where } {}_{a}^{c}D_{t}^{\alpha} x(t))$$ and $$0<\alpha <1$$, such that the following is the corresponding Euler-Lagrange ${}_{t}D_{b}^{\alpha}\bigl({}_{a}^{c}D_{t}^{\alpha}\bigr)x(t)+b\bigl(t,x(t)\bigr)\bigl({}_{a}^{c}D_{t}^{\alpha}x(t)\bigr)+f\bigl(t,x(t)\bigr)=0.\tag{1}$ At last, exact solutions for some Euler-Lagrange equations are presented. In particular, we consider the following equations ${}_{t}D_{b}^{\alpha}\bigl({}_{a}^{c}D_{t}^{\alpha}x(t)\bigr)=\lambda x(t)\quad (\lambda\in R), \tag{2}$ ${}_{t}D_{b}^{\alpha}\bigl({}_{a}^{c}D_{t}^{\alpha}x(t)\bigr)+g(t)_{a}^{c}D_{t}^{\alpha}x(t)=f(t), \tag{3}$ where $$g(t)$$ and $$f(t)$$ are suitable functions.

##### MSC:
 70H30 Other variational principles in mechanics 26A33 Fractional derivatives and integrals
Full Text:
##### References:
  Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008  Zaslavsky, G.M.: Hamiltonian Chaos and Fractional Dynamics. Oxford University Press, Oxford (2005) · Zbl 1083.37002  Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006) · Zbl 1092.45003  Magin, R.L.: Fractional Calculus in Bioengineering. Begell House, Connecticut (2006)  Mainardi, F., Luchko, Yu., Pagnini, G.: The fundamental solution of the space–time fractional diffusion equation. Frac. Calc. Appl. Anal. 4(2), 153 (2001) · Zbl 1054.35156  Tenreiro Machado, J.A.: A probabilistic interpretation of the fractional-order differentiation. Frac. Calc. Appl. Anal. 8, 73–80 (2003) · Zbl 1035.26010  Tenreiro Machado, J.A.: Discrete-time fractional-order controllers. Frac. Calc. Appl. Anal. 4, 47–66 (2001) · Zbl 1111.93307  Tofighi, A.: The intrinsic damping of the fractional oscillator. Phys. A 329, 29–34 (2006)  Trujillo, J.J.: On a Riemann–Liouville generalized Taylor’s formula. J. Math. Anal. Appl. 231, 255–265 (1999) · Zbl 0931.26004 · doi:10.1006/jmaa.1998.6224  Lim, S.C., Muniady, S.V.: Stochastic quantization of nonlocal fields. Phys. Lett. A 324, 396–405 (2004) · Zbl 1123.81376 · doi:10.1016/j.physleta.2004.02.073  Stanislavsky, A.A.: Fractional oscillator. Phys. Rev. E 70, 051103 (2004) · Zbl 1178.26008 · doi:10.1103/PhysRevE.70.051103  Riewe, F.: Nonconservative Lagrangian and Hamiltonian mechanics. Phys. Rev. E 53, 1890–1899 (1996) · doi:10.1103/PhysRevE.53.1890  Riewe, F.: Mechanics with fractional derivatives. Phys. Rev. E 55, 3581–3592 (1997) · doi:10.1103/PhysRevE.55.3581  Klimek, M.: Fractional sequential mechanics-models with symmetric fractional derivatives. Czech. J. Phys. 51, 1348–1354 (2001) · Zbl 1064.70507 · doi:10.1023/A:1013378221617  Klimek, M.: Lagrangian and Hamiltonian fractional sequential mechanics. Czech. J. Phys. 52, 1247–1253 (2002) · Zbl 1064.70013 · doi:10.1023/A:1021389004982  El-Nabulusi, R.A.: A fractional approach to nonconservative Lagrangian dynamics. Fiz. A 14(4), 289–298 (2005)  Agrawal, O.P.: Formulation of Euler–Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272, 368–379 (2002) · Zbl 1070.49013 · doi:10.1016/S0022-247X(02)00180-4  Agrawal, O.P.: Fractional variational calculus and the transversality conditions. J. Phys. A: Math. Gen. 39, 10375–10384 (2006) · Zbl 1097.49021 · doi:10.1088/0305-4470/39/33/008  Agrawal, O.P.: Generalized Euler–Lagrange equations and transversality conditions for FVPs in terms of Caputo Derivative. In: Tas, K., Tenreiro Machado, J.A., Baleanu, D. (eds.) Proc. MME06, Ankara, Turkey, 27–29 April 2006, to appear in J. Vib. Control (2007)  Rabei, E.M., Nawafleh, K.I., Hijjawi, R.S., Muslih, S.I. Baleanu, D.: The Hamiltonian formalism with fractional derivatives. J. Math. Anal. Appl. 327, 891–897 (2007) · Zbl 1104.70012 · doi:10.1016/j.jmaa.2006.04.076  Muslih, S., Baleanu, D.: Hamiltonian formulation of systems with linear velocities within Riemann–Liouville fractional derivatives. J. Math. Anal. Appl. 304(3), 599–603 (2005) · Zbl 1149.70320 · doi:10.1016/j.jmaa.2004.09.043  Baleanu, D.: Fractional Hamiltonian analysis of irregular systems. Signal Process. 86(10), 2632–2636 (2006) · Zbl 1172.94362 · doi:10.1016/j.sigpro.2006.02.008  Baleanu, D., Muslih, S.I.: Formulation of Hamiltonian equations for fractional variational problems. Czech. J. Phys. 55(6), 633–642 (2005) · Zbl 1181.70017 · doi:10.1007/s10582-005-0067-1  Baleanu, D., Muslih, S.: Lagrangian formulation of classical fields within Riemann–Liouville fractional derivatives. Phys. Scr. 72(2–3), 119–121 (2005) · Zbl 1122.70360 · doi:10.1238/Physica.Regular.072a00119  Baleanu, D., Avkar, T.: Lagrangians with linear velocities within Riemann–Liouville fractional derivatives. Nuovo Cimento B 119, 73–79 (2004) · Zbl 1120.26001  Tenreiro-Machado, J.A.: Discrete-time fractional-order controllers. Frac. Calc. Appl. Anal. 4(1), 47–68 (2001) · Zbl 1111.93307  Agrawal, O.P., Baleanu, D.: A Hamiltonian formulation and a direct numerical scheme for fractional optimal control problems. In: Tas, K., Tenreiro Machado, J.A., Baleanu, D. (eds.) Proc. MME06, Ankara, Turkey, 27–29 April 2006, to appear in J. Vib. Control (2007)  Jumarie, G.: Lagrangian mechanics of fractional order, Hamilton–Jacobi fractional PDE and Taylor’s series of nondifferntiable functions. Chaos Solitons Fractals 32, 969–987 (2007) · Zbl 1154.70011 · doi:10.1016/j.chaos.2006.07.053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.