×

zbMATH — the first resource for mathematics

A decision support system for cyclic master surgery scheduling with multiple objectives. (English) Zbl 1170.90408
Summary: This paper presents a decision support system for cyclic master surgery scheduling and describes the results of an extensive case study applied in a medium-sized Belgian hospital. Three objectives are taken into account when building the master surgery schedule. First of all, the resulting bed occupancy at the hospitalization units should be leveled as much as possible. Second, a particular operating room is best allocated exclusively to one group of surgeons having the same speciality; i.e., operating rooms should be shared as little as possible between different surgeon groups. Third, the master surgery schedule is preferred to be as simple and repetitive as possible, with few changes from week to week. The system relies on mixed integer programming techniques involving the solution of multi-objective linear and quadratic optimization problems, and on a simulated annealing metaheuristic.

MSC:
90B50 Management decision making, including multiple objectives
Software:
CPLEX
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adenso-Díaz, B., & Rodríguez, F. (1997). A simple search heuristic for the MCLP: Application to the location of ambulance bases in a rural region. Omega, International Journal of Management Science, 25, 181–187. · doi:10.1016/S0305-0483(96)00058-8
[2] Aickelin, U., & Dowsland, K. A. (2000). Exploiting problem structure in a genetic algorithms approach to a nurse rostering problem. Journal of Scheduling, 31, 139–153. · Zbl 0965.90019 · doi:10.1002/(SICI)1099-1425(200005/06)3:3<139::AID-JOS41>3.0.CO;2-2
[3] Aickelin, U., & White, P. (2004). Building better nurse scheduling algorithms. Annals of Operations Research, 128, 159–177. · Zbl 1056.90049 · doi:10.1023/B:ANOR.0000019103.31340.a6
[4] Beliën, J., & Demeulemeester, E. (2007). Building cyclic master surgery schedules with leveled resulting bed occupancy. European Journal of Operational Research, 176, 1185–1204. · Zbl 1103.90336 · doi:10.1016/j.ejor.2005.06.063
[5] Blake, J. T., & Donald, J. (2002). Mount Sinai hospital uses integer programming to allocate operating room time. Interfaces, 32, 63–73. · doi:10.1287/inte.32.2.63.57
[6] Blake, J. T., Dexter, F., & Donald, J. (2002). Operating room manager’s use of integer programming for assigning block time to surgical groups: A case study. Anesthesia and Analgesia, 94, 143–148. · doi:10.1097/00000539-200201000-00027
[7] Brandeau, M. L., Sainfort, F., & Pierskalla, W. P. (2004). Operations research and health care: A handbook of methods and applications. Dordrecht: Kluwer Academic. · Zbl 1050.90001
[8] Brotcorne, L., Laporte, G., & Semet, F. (2003). Ambulance location and relocation models. European Journal of Operational Research, 147, 451–463. · Zbl 1037.90554 · doi:10.1016/S0377-2217(02)00364-8
[9] Burke, E. K., De Causmaecker, P., & Vanden Berghe, G. (1999). A hybrid tabu search algorithm for the nurse rostering problem. In Simulated evolution and learning (Vol. 1585, pp. 187–194). Berlin: Springer.
[10] Burke, E. K., De Causmaecker, P., Petrovic, S., & Vanden Berghe, G. (2003). METAHEURISTICS: computer decision-making. In M. G. C. Resende (Ed.), Combinatorial Optimization Book Series. Variable neighborhood search for nurse rostering problems (pp. 153–172). Dordrecht: Kluwer.
[11] Burke, E. K., De Causmaecker, P., & Vanden Berghe, G. (2004). Novel metaheuristic approaches to nurse rostering problems in Belgian hospitals. In J. Leung (Ed.), Handbook of scheduling: algorithms, models and performance analysis (Vol. 18, pp. 1–44). Boca Raton: CRC Press.
[12] Burke, E. K., De Causmaecker, P., Vanden Berghe, G., & Van Landeghem, H. (2004). The state of the art of nurse rostering. Journal of Scheduling, 7, 441–499. · Zbl 1154.90422 · doi:10.1023/B:JOSH.0000046076.75950.0b
[13] Burke, E., Curtois, T., Post, G., Qu, R., & Veltman, B. (2008). A hybrid heuristic ordering and variable neighbourhood search for the nurse rostering problem. European Journal of Operational Research. 188(2), 330–341. · Zbl 1149.90346 · doi:10.1016/j.ejor.2007.04.030
[14] Cardoen, B., Demeulemeester, E., & Beliën, J. (2006). Optimizing a multiple objective surgical case scheduling problem (Working paper KBI 0625). Katholieke Universiteit Leuven, Belgium.
[15] Cardoen, B., Demeulemeester, E., & Beliën, J. (2007). Scheduling surgical cases in a day-care environment: a branch-and-price approach (Working paper KBI 0724). Katholieke Universiteit Leuven, Belgium. · Zbl 1179.90217
[16] Coppola, M., Ozcan, Y., & Bogacki, R. (2003). Evaluation of performance of dental providers on posterior restorations: Does experience matter? A data envelopment analysis (DEA) approach. Journal of Medical Systems, 27, 447–458. · doi:10.1023/A:1025659822427
[17] Everett, J. (2002). A decision support simulation model for the management of an elective surgery waiting system. Health Care Management Science, 5, 89–95. · doi:10.1023/A:1014468613635
[18] Fries, B. (1976). Bibliography of operations research in health-care systems. Operations Research, 24, 801–804. · Zbl 0345.90053 · doi:10.1287/opre.24.5.801
[19] Hans, E. W., Wullink, G., van Houdenhoven, M., & Kazemier, G. (2008). Robust surgery loading. European Journal of Operational Research. 185(3), 1038–1050. · Zbl 1178.90229 · doi:10.1016/j.ejor.2006.08.022
[20] Hsu, V., de Matta, R., & Lee, C.-Y. (2003). Scheduling patients in an ambulatory surgical center. Naval Research Logistics, 50, 218–238. · Zbl 1030.90034 · doi:10.1002/nav.10060
[21] Huang, M. D., Romeo, F., & Sangiovanni-Vincentelli, A. (1986). An efficient general cooling schedule for simulated annealing. In IEEE international conference on computer-aided design (pp. 381–384).
[22] ILOG (2002) ILOG CPLEX 8.1 user’s manual.
[23] Kellogg, D. L., & Walczak, S. (2007). Nurse scheduling: From academia to implementation or not? Interfaces, 37(4), 355–369. · doi:10.1287/inte.1070.0291
[24] Kim, S.-C., & Horowitz, I. (2002). Scheduling hospital services: The efficacy of elective-surgery quotas. Omega–The International Journal of Management Science, 30, 335–346. · doi:10.1016/S0305-0483(02)00050-6
[25] Kim, S.-C., Horowitz, I., & Buckley, T. A. (2000). Flexible bed allocation and performance in the intensive care unit. Journal of Operations Management, 18, 427–443. · doi:10.1016/S0272-6963(00)00027-9
[26] Kirkpatrick, S., Gerlatt, C. D. J., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220, 671–680. · Zbl 1225.90162 · doi:10.1126/science.220.4598.671
[27] Kusters, R., & Groot, P. (1996). Modelling resource availability in general hospitals: Design and implementation of a decision support model. European Journal of Operational Research, 88, 428–445. · Zbl 0911.90245 · doi:10.1016/0377-2217(95)00201-4
[28] Lapierre, S., Batson, C., & McCaskey, S. (1999). Improving on-time performance in health care organizations: a case study. Health Care Management Science, 2, 27–34. · doi:10.1023/A:1019059022128
[29] Litvak, E., & Long, M. C. (2000). Cost and quality under managed care: Irreconcilable differences? The American Journal of Managed Care, 6, 305–312.
[30] Marcon, E., & Dexter, F. (2006). Impact of surgical sequencing on post anesthesia care unit staffing. Health Care Management Science, 9, 87–98. · doi:10.1007/s10729-006-6282-x
[31] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E. (1958). Equations of state calculations by fast computing machines. Journal of Chemical Physics, 21, 1087–1092. · doi:10.1063/1.1699114
[32] Ogulata, S., & Erol, R. (2003). A hierarchical multiple criteria mathematical programming approach for scheduling general surgery operations in large hospitals. Journal of Medical Systems, 27(3), 259–270. · doi:10.1023/A:1022575412017
[33] Pérez, B., Arenas, M., Bilbao, A., & Rodriguez, M. (2005). Management of surgical waiting lists through a possiblistic linear multiobjective programming problem. Applied Mathematics and Computation, 167, 477–495. · Zbl 1079.90574 · doi:10.1016/j.amc.2004.07.015
[34] Pincus, M. (1970). A Monte Carlo method for the approximate solution of certain types of constrained optimization problems. Operations Research, 18, 1225–1228. · Zbl 0232.90063 · doi:10.1287/opre.18.6.1225
[35] Pritsker, A. (1998). Life and death decisions: Organ transplantation allocation policy analysis. ORMS Today, 25, 22–28.
[36] RIZIV (2005). Evolutie van de uitgaven voor geneeskundige verzorging. www.riziv.be .
[37] Romeijn, H. E., Ahuja, R. K., Dempsey, J. F., & Kumar, A. (2006). A new linear programming approach to radiation therapy treatment planning problems. Operations Research, 54(2), 201–216. · Zbl 1167.90587 · doi:10.1287/opre.1050.0261
[38] Santibanez, P., Begen, M., & Atkins, D. (2007). Managing surgical waitlists for a British Columbia health authority. Health Care Management Science, 10, 269–282. · doi:10.1007/s10729-007-9019-6
[39] Sewell, E., & Jacobson, S. (2003). Using an integer programming model to determine the price of combination vaccines for childhood immunization. Annals of Operations Research, 119, 261–284. · Zbl 1026.90041 · doi:10.1023/A:1022955111568
[40] Van Laarhoven, P. J. M., & Aarts, E. H. L. (1988). Simulated annealing: Theory and applications. Dordrecht: Kluwer. · Zbl 0643.65028
[41] van Oostrum, J., Van Houdenhoven, M., Hurink, J., Hans, E., Wullink, G., & Kazemier, G. (2006). A master surgical scheduling approach for cyclic scheduling in operating room departments. OR Spektrum, 30(2), 355–374. · Zbl 1170.90402
[42] Vissers, J. M. H., Bertrand, J., & de Vries, G. (2001). A framework for production control in healthcare organisations. Production Planning and Control, 12(6), 591–604. · doi:10.1080/095372801750397716
[43] Wiers, V. C. (1997). A review of the applicability of OR and AI scheduling techniques in practice. Omega–The International Journal of Management Science, 25(2), 145–153. · doi:10.1016/S0305-0483(96)00050-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.