×

zbMATH — the first resource for mathematics

A dual algorithm for minimization of the LLT model. (English) Zbl 1170.94006
Summary: We apply the dual algorithm of Chambolle for the minimization of the LLT model. A convergence theorem is given for the proposed algorithm. The algorithm overcomes the numerical difficulties related to the non-differentiability of the LLT model. The dual algorithm is faster than the original gradient descent algorithm. Numerical experiments are supplied to demonstrate the efficiency of the algorithm.

MSC:
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithm. Physica D 60, 259–268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[2] Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: partial differential equations and the calculus of variations. Applied Mathematical Science, vol. 147, 2nd edn. Springer (2006) · Zbl 1110.35001
[3] Andreu, F., Ballester, C., Caselles, V., Mazon, J.M.: Minimizing total variation flow. CRAS I-Mathématique 331(11), 867–872 (2000) · Zbl 0973.35113
[4] Chambolle, A., Lions, P.L.: Image recovery via total variation minimization and related problems. Numer. Math. 76, 167–188 (1997) · Zbl 0874.68299 · doi:10.1007/s002110050258
[5] Acar, R., Vogel, C.R.: Analysis of bounded variation penalty methods for ill-posed problem. Inverse Probl. 10, 1217–1229 (1994) · Zbl 0809.35151 · doi:10.1088/0266-5611/10/6/003
[6] Vese, L.: A study in the BV space of a denosing–deblurring variationl problem. Appl. Math. Optim. 44, 131–161 (2001) · Zbl 1003.35009 · doi:10.1007/s00245-001-0017-7
[7] Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004) · Zbl 1366.94056 · doi:10.1023/B:JMIV.0000011320.81911.38
[8] Blomgern, P., Chan, T.F., Mulet, P., Wong, C.: Total variation image restoration: Numerical methods and extensions. In: Proceedings, IEEE International Conference on Image Processing, III, pp. 384–387 (1997)
[9] Nikolova, M.: Weakly constrained minimization: application to the estimation of images and signals involving constant regions. J. Math. Imaging Vis. 21, 155–175 (2004) · doi:10.1023/B:JMIV.0000035180.40477.bd
[10] Chan, T.F., Marquina, A., Mulet, P.: High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2), 503–516 (2000) · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[11] You, Y.-L., Kaveh, M.: Fourth-order partial differential equation for noise removal. IEEE Trans. Image Process. 9(10), 1723–1730 (2000) · Zbl 0962.94011 · doi:10.1109/83.869184
[12] Lysaker, M., Lundervold, A., Tai, X.-C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time. IEEE Trans. Image Process. 12(12), 1579–1590 (2003) · Zbl 1286.94020 · doi:10.1109/TIP.2003.819229
[13] Osher, S., Sole, A., Vese, L.: Image decomposition and restoration using total variation minimization and the H 1 norm. Multiscale Model. Simul. 1(3), 349–370 (2003) · Zbl 1051.49026 · doi:10.1137/S1540345902416247
[14] Didas, S., Burgeth, B., Imiya, A., Weickert, J.: Regularity and scale- space properties of fractional high order linear filtering. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Scale-space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459. Springer, Berlin (2005) · Zbl 1119.68469
[15] Didas, S., Weickert, J., Burgeth, B.: Stability and local feature enhancement of higher order nonlinear diffusion filtering. In: Kropatsch, W., Sablatnig, R., Hanbury, A. (eds.) Pattern Recognition. Lecture Notes in Computer Science, vol. 3663, pp. 451–458. Springer, Berlin (2005)
[16] Osher, S., Scherzer, O.: G-norm properties of bounded variation regularization. Comm. Math. Sci. 2(2), 237–254 (2004) · Zbl 1082.49003
[17] Obereder, A., Osher, S., Scherzer, O.: On the use of dual norms in bounded variation type regularization. UCLA cam report, cam-04-35. Available from: http://www.math.ucla.edu/applied/cam/ (2004)
[18] Fang, L., Shen, C., Fan, J., Shen, C.: Image restoration combining a total variational filter and a fourth-order filter. J. Vis. Commun. Image Represent. 18(4), 322–330 (2007) · Zbl 05461584 · doi:10.1016/j.jvcir.2006.10.003
[19] Bertsekas, D.P.: Convex Analysis and Optimization. Tsinghua University Press (2006) · Zbl 1108.90042
[20] Yuan, Y.X.: Numerical Method For Nonlinear Programming. Shanghai Scientific and Technical Publishers (1992)
[21] Liu, Q., Yao, Z.G., Ke, Y.: Entropy solutions for a fourth-order nonlinear degenerate problem for noise removal. Nonlinear Anal. Theory Methods Appl. 67(6), 1908–1918 (2007) · Zbl 1119.35031 · doi:10.1016/j.na.2006.08.016
[22] Liu, Q., Yao, Z.G., Ke, Y.: Solutions of fourth-order partial differential equations in a noise removal model. Electron. J. Diff. Equ. 2007(120), 11 (2007) · Zbl 1138.35353
[23] Chan, T.F., Esedoglu, S., Park, F.: Image decomposition combining staircase reduction and texture extraction. J. Vis. Commun. Image Represent. 18(6), 464–486 (2007) · Zbl 05461772 · doi:10.1016/j.jvcir.2006.12.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.