Classes of general \(H\)-matrices. (English) Zbl 1171.15026

Three classes of \(H\)-matrices \(A \in \mathbb C ^{ n \times n}\), one of them with non-singular and the other two with singular comparison \(M\)-matrices \({\mathcal M}(A)\) are examined. In the third mixed class there are both singular and non-singular matrices in the set of equimodular matrices of \(A\). Necessary or sufficient conditions are obtained to conclude as to whether a given \(A\) is an \(H\)-matrix, and if so, to which class in question it belongs. A classification of the \(H\)-matrices considered then follows.


15B57 Hermitian, skew-Hermitian, and related matrices
Full Text: DOI


[1] Alanelli, M.; Hadjidimos, A., A new iterative criterion for H-matrices, SIAM J. matrix anal. appl., 29, 1, 160-176, (2006) · Zbl 1140.65031
[2] Berman, A.; Plemmons, R.J., Nonnegative matrices in the mathematical sciences, (1979), Academic Press London, (reprinted and updated, SIAM, Philadelphia, 1994) · Zbl 0484.15016
[3] Boman, E.G.; Chen, D.; Parekh, O.; Toledo, S., On factor width and symmetric H-matrices, Linear algebra appl., 405, 239-248, (2005) · Zbl 1098.15014
[4] C. Corral, I. Giménez, J. Mas, Algorithms based on diagonal dominance: H-matrix, Perron vector and reducibility, in: Proceedings of the Fifth Int. Conf. on Eng. Comp. Tech., Las Palmas de Gran Canaria, 2006.
[5] Cvetkovic, L.; Kostic, V., New criteria for identifying H-matrices, J. comput. appl. math., 180, 265-278, (2005) · Zbl 1073.65038
[6] Cvetkovic, L.; Kostic, V.; Varga, R.S., A new geršgoring-type eigenvalue inclusion set, Electron. trans. numer. anal., 18, 73-80, (2004) · Zbl 1069.15016
[7] Elsner, L.; Mehrmann, V., Convergence of block iterative methods for linear systems arising in the numerical solution of Euler equations, Numer. math., 59, 541-559, (1991) · Zbl 0744.65026
[8] Fiedler, M.; Markham, T.L., A classification of matrices of class Z, Linear algebra appl., 173, 115-124, (1992) · Zbl 0754.15016
[9] Gan, T.-B.; Huang, T.-Z., Simple criteria for nonsingular H-matrices, Linear algebra appl., 374, 317-326, (2003) · Zbl 1033.15019
[10] Gao, Y.-M.; Wang, X.-H., Criteria for generalized diagonally dominant matrices and M-matrices, Linear algebra appl., 169, 257-268, (1992) · Zbl 0757.15010
[11] Huang, T.; Shen, S.; Li, H., On generalized H-matrices, Linear algebra appl., 396, 81-90, (2005) · Zbl 1065.65050
[12] Kohno, T.; Niki, H.; Sawami, H.; Gao, Y.-M., An iterative test for H-matrix, J. comput. appl. math., 115, 349-355, (2000) · Zbl 0946.65021
[13] Li, B.; Li, L.; Harada, M.; Niki, H.; Tsatsomeros, M.J., An iterative criterion for H-matrices, Linear algebra appl., 271, 179-190, (1998) · Zbl 0891.15021
[14] Nabben, R., On a class of matrices which arise in the numerical solution of Euler equations, Numer. math., 63, 411-431, (1992) · Zbl 0764.65019
[15] Nabben, R., Z-matrices and inverse Z-matrices, Linear algebra appl., 256, 31-48, (1997) · Zbl 0874.15003
[16] Ostrowski, A.M., Über die determinanten mit überwiegender hauptdiagonale, Comment. math. helv., 10, 69-96, (1937) · JFM 63.0035.01
[17] Robert, F., Blocs H-matrices et convergence des methodes iteratives classiques par blocs, Linear algebra appl., 2, 223-265, (1969) · Zbl 0182.21302
[18] Varga, R.S., On recurring theorems on diagonal dominance, Linear algebra appl., 13, 1-9, (1976) · Zbl 0336.15007
[19] Varga, R.S., Matrix iterative analysis, (1962), Prentice Hall Englewoods Cliffs, New Jersey, (reprinted and updated, Springer, Berlin, 2000) · Zbl 0133.08602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.