zbMATH — the first resource for mathematics

Existence of nontrivial homoclinic orbits for fourth-order difference equations. (English) Zbl 1171.39005
The authors study the existence of nontrivial homoclinic orbits emanating from \(0\) of the fourth-order difference equation
\[ \Delta ^{4}u\left( t-2\right) -q\left( t\right) u\left( t\right) +f\left( t,u\left( t+1\right) ,u\left( t\right) ,u\left( t-1\right) \right) =0,\;\;t\in \mathbb{Z}, \] where \(\Delta \) is the forward difference operator \(\Delta u\left( t\right) =u\left( t+1\right) -u\left( t\right) \). The main result is based on Mountain Pass Lemma of D. Smets and M. Willem [J. Funct. Anal. 149, No. 1, 266–275 (1997; Zbl 0889.34059)], a weak convergence argument and a discrete version of E. H. Lieb’s lemma [Invent. Math. 74, 441–448 (1983; Zbl 0538.35058)]. The used method is different from those of M. J. Ma and Z. M. Guo [Nonlinear Anal., Theory Methods Appl. 67, No. 6 (A), 1737–1745 (2007; Zbl 1120.39007), J. Math. Anal. Appl. 323, No. 1, 513–521 (2006; Zbl 1107.39022)].

39A12 Discrete version of topics in analysis
37C29 Homoclinic and heteroclinic orbits for dynamical systems
Full Text: DOI
[1] Agarwal, R.P.; Perera, K.; O’Regan, D., Multiple positive solutions of singular discrete p-Laplacian problems via variational methods, Adv. diff. eqn., 2, 93-99, (2005) · Zbl 1098.39001
[2] Agarwal, R.P.; Perera, K.; O’Regan, D., Multiple positive solutions of singular and nonsingular discrete problems via variational methods, Nonlinear anal., 58, 69-73, (2004) · Zbl 1070.39005
[3] Guo, Z.M.; Yu, J.S., The existence of periodic and subharmonic solutions for second-order superlinear difference equations, Sci. China ser. A, 33, 506-515, (2003) · Zbl 1215.39001
[4] Guo, Z.M.; Yu, J.S., The existence of periodic and subharmonic solutions of subquadratic second-order superlinear difference equations, J. London math. soc., 68, 419-430, (2003) · Zbl 1046.39005
[5] Yu, J.S.; Long, Y.H.; Guo, Z.M., Subharmonic solutions with prescribed minimal period of a discrete forced pendulum equation, J. dynam. diff. eqn., 16, 575-586, (2004) · Zbl 1067.39022
[6] Xue, Y.; Tang, C.L., Existence of a periodic solution for subquadratic second-order discrete Hamiltonian system, Nonlinear anal., 67, 2072-2080, (2007) · Zbl 1129.39008
[7] Xue, Y.; Tang, C.L., Multiple periodic solutions for superquadratic second-order discrete Hamiltonian systems, Appl. math. comput., 205, 814-825, (2007)
[8] Yu, J.S.; Bin, H.H.; Guo, Z.M., Multiple periodic solutions for discrete Hamiltonian systems, Nonlinear anal., 66, 1498-1512, (2007) · Zbl 1115.39017
[9] Ma, M.J.; Guo, Z.M., Homoclinic orbits and subharmonics for nonlinear second-order difference equations, Nonlinear anal., 67, 1737-1745, (2007) · Zbl 1120.39007
[10] Ma, M.J.; Guo, Z.M., Homoclinic orbits for second order self-adjoint difference equations, J. math. anal. appl., 323, 513-521, (2006) · Zbl 1107.39022
[11] Fečkan, M.; Zeng, W., Transversal homoclinic orbits for higher dimensional difference equations, J. diff. eqn. appl., 7, 215-230, (2001) · Zbl 1002.39026
[12] Fečkan, M., Transversal bounded solutions for difference equations, J. diff. eqn. appl., 8, 33-51, (2002) · Zbl 1001.37017
[13] Glasser, M.L.; Papageorgiou, V.G.; Bountis, T.C., Mel’nikov’s function for two-dimensional mappings, SIAM J. appl. math., 49, 692-703, (1989) · Zbl 0687.58023
[14] Smets, D.; Willem, M., Solitary waves with prescribed speed on infinite lattices, J. functional anal., 149, 266-275, (1997) · Zbl 0889.34059
[15] Lieb, E.H., On the lowest eigenvalue of the Laplacian for the intersection of two domains, Invent. math., 74, 441-448, (1983) · Zbl 0538.35058
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.