×

Measuring elastic property of single-walled carbon nanotubes by nanoindentation: A theoretical framework. (English) Zbl 1171.74395

Summary: Nanoindentation is an effective technique for deducing the elastic property of single-walled carbon nanotubes (SWCNTs). Following an atomistic study of the nanoindentation mechanism, reverse analysis algorithms are proposed by utilizing the indentation force-depth data measured from the initial uniaxial compression and post-buckling regimes, respectively, which lead to stretching stiffness of 382 Pa m and 429 Pa m, that are very close to those in the literature. Parallel finite element simulations incorporating atomic interactions are also carried out, which closely duplicates the indentation response of SWCNTs in atomistic simulations. The numerical studies carried out in this paper may be used to guide the nanoindentation experiments, explain and extract useful data from the test, as well as stimulate new experiments.

MSC:

74M25 Micromechanics of solids
74-05 Experimental work for problems pertaining to mechanics of deformable solids

Software:

ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ABAQUS, 2004. ABAQUS 6.4 User’s Manual. ABAQUS Inc., Pawtucket, Rhode Island.
[2] Cao, G.; Chen, X.; Kysar, J. W.: Strain sensing with carbon nanotubes: numerical analysis of the vibration frequency of deformed single-walled carbon nanotubes, Physical review B 72, 195412 (2005)
[3] Cao, G.; Chen, X.; Kysar, J. W.: Apparent thermal contraction of single-walled carbon nanotubes, Physical review B 72, 235404 (2005) · Zbl 1120.74682
[4] Cao, G.; Chen, X.: Mechanisms of nanoindentation on single-walled carbon nanotubes: the effect of nanotube length, Journal of materials research 21, 1048-1070 (2006)
[5] Cao, G.; Chen, X.: Buckling of single-walled carbon nanotubes under bending: molecular dynamics and finite element simulations, Physical review B 73, 155435 (2006)
[6] Cao, G.; Chen, X.: The effect of displacement increment on the axial compressive buckling behavior of single-walled carbon nanotubes, Nanotechnology 17, 3844-3855 (2006)
[7] Cao, G.; Chen, X.: Buckling behaviors of the single-walled carbon nanotubes and a targeted-molecular dynamics simulation, Physical review B 74, 165422 (2006)
[8] Cao, G.; Chen, X.; Kysar, J. W.: Numerical analysis of the radial breathing mode of individual armchair and zigzag single-walled carbon nanotubes under deformation, Journal of applied physics 100, 124305 (2006)
[9] Cao, G.; Chen, X.; Kysar, J. W.: Thermal vibration and apparent thermal contraction of single-walled carbon nanotubes, Journal of the mechanics and physics of solids 54, 1206-1236 (2006) · Zbl 1120.74682 · doi:10.1016/j.jmps.2005.12.003
[10] Cao, G.; Chen, X.: The effects of chirality and boundary conditions on the mechanical properties of single-walled carbon nanotubes, International journal of solids and structures 44, 5447-5465 (2007) · Zbl 1346.74054
[11] Chen, X.; Cao, G.: A structural mechanics approach of single-walled carbon nanotubes generalized from atomistic simulation, Nanotechnology 17, 1004-1015 (2006)
[12] Chen, X.; Cao, G.: Review: atomistic studies of mechanical properties of carbon nanotubes, Journal of theoretical and computational nanoscience 4, 823-839 (2007)
[13] Chen, X.; Huang, Y.: Review: nanomechanics modeling and simulation of carbon nanotubes, ASCE journal of engineering mechanics 134, 211-216 (2008)
[14] Dai, H. J.; Hafner, J. H.; Rinzler, A. G.; Colbert, D. T.; Smalley, R. E.: Nanotubes as nanoprobes in scanning probe microscopy, Nature 384, 147-150 (1996)
[15] Dillon, A. C.; Jones, K. M.; Bekkedahl, T. A.; Kiang, C. H.; Bethune, D. S.; Heben, M. J.: Storage of hydrogen in single-walled carbon nanotubes, Nature 386, 377-379 (1997)
[16] Hernandez, E.; Goze, C.; Bernier, P.; Rubio, A.: Elastic properties of C and bxcynz composite nanotubes, Physical review letters 80, 4502-4505 (1998)
[17] Huang, Y.; Wu, J.; Hwang, K. C.: Thickness of graphene and single-wall carbon nanotubes, Physical review B, 74 (2006)
[18] Iijima, S.: Helical microtubules of graphitic carbon, Nature 354, 56-58 (1991)
[19] Iijima, S.; Brabec, C.; Maiti, A.; Bernholc, J.: Structural flexibility of carbon nanotubes, Journal of chemical physics 104, 2089-2092 (1996)
[20] Jin, Y.; Yuan, F. G.: Simulation of elastic properties of single-walled carbon nanotubes, Composites science and technology 63, 1507-1515 (2003)
[21] Kim, P.; Lieber, C. M.: Nanotube nanotweezers, Science 286, 2148-2150 (1999)
[22] Kis, A.; Csanyi, G.; Salvetat, J. P.; Lee, T. N.; Couteau, E.; Kulik, A. J.; Benoit, W.; Brugger, J.; Forro, L.: Reinforcement of single-walled carbon nanotube bundles by intertube bridging, Nature materials 3, 153-157 (2004)
[23] Krishnan, A.; Dujardin, E.; Ebbesen, T. W.; Yianilos, P. N.; Treacy, M. M. J.: Young’s modulus of single-walled nanotubes, Physical review B 58, 14013-14019 (1998)
[24] Kudin, K. N.; Scuseria, G. E.; Yakobson, B. I.: C2F, BN, and C nanoshell elasticity from ab initio computations, Physical review B, 64 (2001)
[25] Li, C. Y.; Chou, T. W.: A structural mechanics approach for the analysis of carbon nanotubes, International journal of solids and structures 40, 2487-2499 (2003) · Zbl 1032.74606 · doi:10.1016/S0020-7683(03)00056-8
[26] Liu, L., Cao, G., Chen X., in press. Mechanisms of nanoindentation on multi-walled carbon nanotube and nanotube cluster. Journal of Nanomaterials.
[27] Lu, J. P.: Elastic properties of carbon nanotubes and nanoropes, Physical review letters 79, 1297-1300 (1997)
[28] Liu, P.; Zhang, Y. W.; Lu, C.; Lam, K. Y.: Tensile and bending properties of double-walled carbon nanotubes, Journal of physics D-applied physics 37, 2358-2363 (2004)
[29] Meyyappan, M.; Delzeit, L.; Cassell, A.; Hash, D.: Carbon nanotube growth by PECVD: a review, Plasma sources science and technology 12, 205-216 (2003)
[30] Odegard, G. M.; Gates, T. S.; Nicholson, L. M.; Wise, K. E.: Equivalent-continuum modeling of nano-structured materials, Composites science and technology 62, 1869-1880 (2002)
[31] Odegard, G. M.; Gates, T. S.; Wise, K. E.; Park, C.; Siochi, E. J.: Constitutive modeling of nanotube-reinforced polymer composites, Composites science and technology 63, 1671-1687 (2003)
[32] Ozaki, T.; Iwasa, Y.; Mitani, T.: Stiffness of single-walled carbon nanotubes under large strain, Physical review letters 84, 1712-1715 (2000)
[33] Pantano, A.; Parks, D. M.; Boyce, M. C.: Mechanics of deformation of single- and multi-wall carbon nanotubes, Journal of the mechanics and physics of solids 52, 789-821 (2004) · Zbl 1106.74376 · doi:10.1016/j.jmps.2003.08.004
[34] Pharr, G. M.: Measurement of mechanical properties by ultra-low load indentation, Materials science and engineering A-structural materials properties microstructure and processing 253, 151-159 (1998)
[35] Poncharal, P.; Wang, Z. L.; Ugarte, D.; De Heer, W. A.: Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283, 1513-1516 (1999)
[36] Qi, H. J.; Teo, K. B. K.; Lau, K. K. S.; Boyce, M. C.; Milne, W. I.; Robertson, J.; Gleason, K. K.: Determination of mechanical properties of carbon nanotubes and vertically aligned carbon nanotube forests using nanoindentation, Journal of the mechanics and physics of solids 51, 2213-2237 (2003)
[37] Qian, D.; Wagner, G. J.; Liu, W. K.: A multiscale projection method for the analysis of carbon nanotubes, Computer methods in applied mechanics and engineering 193, 1603-1632 (2004) · Zbl 1079.74595 · doi:10.1016/j.cma.2003.12.016
[38] Sears, A.; Batra, R. C.: Buckling of multiwalled carbon nanotubes under axial compression, Physical review B, 73 (2006)
[39] Selmi, A.; Friebel, C.; Doghri, I.; Hassis, H.: Prediction of the elastic properties of single walled carbon nanotube reinforced polymers: a comparative study of several micromechanical models, Composites science and technology 67, 2071-2084 (2007)
[40] Tans, S. J.; Verschueren, A. R. M.; Dekker, C.: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49-52 (1998)
[41] Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M.: Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature 381, 678-680 (1996)
[42] Tu, Z. C.; Ou-Yang, Z.: Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number, Physical review B, 65 (2002)
[43] Wong, E. W.; Sheehan, P. E.; Lieber, C. M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes, Science 277, 1971-1975 (1997)
[44] Yakobson, B. I.; Brabec, C. J.; Bernholc, J.: Nanomechanics of carbon tubes: instabilities beyond linear response, Physical review letters 76, 2511-2514 (1996)
[45] Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S.: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637-640 (2000)
[46] Zhou, X.; Zhou, J. J.; Ou-Yang, Z. C.: Strain energy and Young’s modulus of single-wall carbon nanotubes calculated from electronic energy-band theory, Physical review B 62, 13692-13696 (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.